Biodiversity monitoring via environmental DNA, particularly metabarcoding, is evolving into a powerful assessment tool for riverine systems. However, for metabarcoding to be fully integrated into standardized monitoring programmes, some current challenges concerning sampling design, laboratory workflow, and data analysis need to be overcome. Here, we review some of these major challenges and potential solutions. We further illustrate three potential pitfalls, namely the choice of suitable metabarcoding primers, the necessity of complete reference databases, and varying assay sensitivities, by a reappraisal of our‐own recently carried out metabarcoding study in the Volga headwaters. TaqMan qPCRs had detected catfish (Silurus glanis) and European eel (Anguilla anguilla), whereas metabarcoding had not, in the same samples. Furthermore, after extending the genetic reference database by 12 additional species and re‐analysing the metabarcoding data, we additionally detected the Siberian spiny loach (Cobitis sibirica) and Ukrainian brook lamprey (Eudontomyzon mariae) and reassigned the operational taxonomic units previously assigned to Misgurnus fossilis to Cobitis sibirica. In silico analysis of metabarcoding primer efficiencies revealed considerable variability among primer pairs and among target species, which could lead to strong primer bias and potential false‐negatives in metabarcoding studies if not properly compensated for. These results highlight some of the pitfalls of eDNA‐metabarcoding as a means of monitoring fish biodiversity in large rivers, which need to be considered in order to fully unleash the full potential of these approaches for freshwater biodiversity monitoring.
The headwaters of the Volga River exhibit large reaches with near‐pristine conditions, and therefore long‐term biodiversity monitoring of this catchment can provide rare and valuable information on a European lowland river. More specifically, freshwater fish species assemblages are a good indicator of ecosystem status, as they are particularly sensitive to environmental changes and hydromorphological alterations. Historical records show that the fish fauna of the Upper Volga has changed over time, both in species composition and in abundance. The construction of the Volga–Kama cascade (a series of large dams) has specifically affected the migration of diadromous species.
Environmental DNA metabarcoding offers a non‐invasive approach to determine the number of species in an aquatic ecosystem, as well as their identity and distribution. This approach is especially useful for fish fauna surveys along large rivers and long‐term biomonitoring, with the advantage of having no impact on the species and their habitats.
To infer the current fish species diversity and the spatial distribution of each species in the free‐flowing section of the Upper Volga River, as well as in selected tributaries, an environmental DNA metabarcoding approach was applied, using three mitochondrial DNA markers. This method allowed the positive identification of 23 fish species and their respective distributions in the headwaters of the Volga.
This assessment provides a valuable example of the application of environmental DNA metabarcoding in a large river system, and constitutes a starting point for future investigations and long‐term biomonitoring in the Upper Volga system. In addition, the results can also serve as a reference for fish diversity assessments of other large European lowland rivers, and can guide future conservation and management measures in the headwaters of the Volga.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.