Approximately 40% of the world population live in areas with the risk of malaria. Each year, 300-500 million people suffer from acute malaria, and 0.5-2.5 million die from the disease. Although malaria has been widely eradicated in many parts of the world, the global number of cases continues to rise. The most important reason for this alarming situation is the rapid spread of malaria parasites that are resistant to antimalarial drugs, especially chloroquine, which is by far the most frequently used. The development of new antimalarial drugs has been neglected since the 1970s owing to the end colonialism, changes in the areas of military engagement, and the restricted market potential. Only in recent years, in part supported by public funding programs, has interest in the development of antimalarial drugs been renewed. New data available from the recently sequenced genome of the malaria parasite Plasmodium falciparum and the application of methods of modern drug design promise to bring significant development in the fight against this disease.
Since ancient times, humankind has had to struggle against the persistent onslaught of pathogenic microorganisms. Nowadays, malaria is still the most important infectious disease worldwide. Considerable success in gaining control over malaria was achieved in the 1950s and 60s through landscaping measures, vector control with the insecticide DDT, and the widespread administration of chloroquine, the most important antimalarial agent ever. In the late 1960s, the final victory over malaria was believed to be within reach. However, the parasites could not be eradicated because they developed resistance against the most widely used and affordable drugs of that time. Today, cases of malaria infections are on the rise and have reached record numbers. This review gives a short description of the malaria disease, briefly addresses the history of antimalarial drug development, and focuses on drugs currently available for malaria therapy. The present knowledge regarding their mode of action and the mechanisms of resistance are explained, as are the attempts made by numerous research groups to overcome the resistance problem within classes of existing drugs and in some novel classes. Finally, this review covers all classes of antimalarials for which at least one drug candidate is in clinical development. Antimalarial agents that are solely in early development stages will be addressed in a separate review.
Malaria continues to be a potentially fatal threat to almost half of the world's population. In light of this threat, the armory to fight this disease is rather limited. Resistance against the most common and affordable antimalarials is widespread. Only few new drugs are in clinical development, most of them belong to long used classes of antimalarial drugs. This review will concisely cover the drugs which are currently in use, and describe the drug candidates which are in clinical evaluation.
Farnesyltransferase catalyzes the posttranslational modification of numerous proteins involved in intracellular signal transduction by transferring the farnesyl residue of farnesyl pyrophosphate to the thiol of a cysteine side chain of the protein substrate. The cysteine residue belongs to a characteristic carboxy-terminal consensus sequence, the so-called
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.