Psiloceras spelae tirolicum. The "Golden Spike" was fixed at Kuhjoch East. The section displays a high and continuous sedimentation rate with a constant facies trend across the boundary level. Other bio-events include the FO of the aragonitic foraminifer Praegubkinella turgescens, and of diverse ostracod species 1.0-3.40 cm below the FO of P. spelae and 3.2 m below P. spelae occurs the continental palynomorph Cerebropollenites thiergartii. Because of the lack of other terrestrial microfloral events this is yet the FO event closest to the FO of P. spelae and allows a correlation with nonmarine sediments. The δ 13 C org record shows a strong initial negative excursion at the boundary between the Kössen and Kendlbach formations, 5.8 m (Kuhjoch W) below the T-J boundary, a shift to more positive δ 13 C org in the Schattwald Beds and a gradual decline to more negative values at the transition of the Schattwald Beds to the proximate Tiefengraben Mb. The stratotype point lies within a zone of smaller negative and positive δ 13 C org peaks, which is superimposed on a longer lasting main negative shift. According to recent investigations, the radiometric age of the T-J boundary is about 201,3 Ma.
Abstract. The Permian-Triassic boundary sections in northwestern Iran belong to the most complete successions, in which the largest mass extinction event in the history of the Earth can be studied. We investigated the Changhsingian stage in six sections in the area of Julfa (Aras Valley) for their lithology, conodonts and ammonoids. Revision of the biostratigraphy led to the separation of 10 conodont zones (from bottom to top Clarkina orientalis-C. subcarinata interval zone, C. subcarinata, C. changxingensis, C. bachmanni,
The end-Permian mass extinction, the most severe biotic crisis in the Phanerozoic, was accompanied by climate change and expansion of oceanic anoxic zones. The partitioning of sulfur among different exogenic reservoirs by biological and physical processes was of importance for this biodiversity crisis, but the exact role of bioessential sulfur in the mass extinction is still unclear. Here we show that globally increased production of organic matter affected the seawater sulfate sulfur and oxygen isotope signature that has been recorded in carbonate rock spanning the Permian−Triassic boundary. A bifurcating temporal trend is observed for the strata spanning the marine mass extinction with carbonate-associated sulfate sulfur and oxygen isotope excursions toward decreased and increased values, respectively. By coupling these results to a box model, we show that increased marine productivity and successive enhanced microbial sulfate reduction is the most likely scenario to explain these temporal trends. The new data demonstrate that worldwide expansion of euxinic and anoxic zones are symptoms of increased biological carbon recycling in the marine realm initiated by global warming. The spatial distribution of sulfidic water column conditions in shallow seafloor environments is dictated by the severity and geographic patterns of nutrient fluxes and serves as an adequate model to explain the scale of the marine biodiversity crisis. Our results provide evidence that the major biodiversity crises in Earth's history do not necessarily implicate an ocean stripped of (most) life but rather the demise of certain eukaryotic organisms, leading to a decline in species richness.sulfur cycle | end-Permian mass extinction | primary productivity
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.