We show experiments proving the feasibility of scanning fluorescence microscopy by three-photon excitation. Three-photon excitation fluorescence axial images are shown of polystyrene beads stained with the fluorophore 2,5-bis(4-biphenyl)oxazole (BBO). Three-photon excitation is performed at an excitation wavelength of 900 nm and with pulses of 130 fs duration provided by a mode-locked titanium-sapphire laser. Fluorescence is collected between 350 and 450 nm. The fluorescence image signal features a third-order dependence on the excitation power, also providing intrinsic 3-D imaging. The resolution of a three-photon excitation microscope is increased over that of a comparable two-photon excitation microscope.
SummaryWe report three-dimensional (3D) microscopy with nearly isotropic resolution in the l/5 ¹ l/10 range. Our approach combines 4Pi-confocal two-photon fluorescence microscopy with image restoration. The 3D resolution is demonstrated with densely clustered beads as well as with F-actin fibers in mouse fibroblast cells. A comparison with unrestored twophoton confocal images reveals a total reduction of the uncertainty volume up to a factor of 15.
We examined the fluorescence spectral properties of the DNA stains DAPI (4',6-diamidino-2-phenylindole, hydrochloride) and Hoechst 33342 (bis-benzimide, or 2,5'-bi'1H-benzimidazole2'-(4-ethoxyphenyl)-5-(4-methyl-1-piperazi nyl)) with two-photon (2h nu) and three-photon (3h nu) excitation using femtosecond pulses from a Ti:sapphire laser from 830 to 885 nm. The mode of excitation of DAPI bound to DNA changed from two-photon at 830 nm to three-photon at 885 nm. In contrast, Hoechst 33342 displayed only two-photon excitation from 830 to 885 nm. DAPI-DNA displayed the same emission spectra and decay times for 2h nu and 3h nu excitation. Hoechst 33342-DNA displayed the same intensity decay for excitation at 830 and 885 nm. Both probes displayed higher anisotropies for multiphoton excitation as compared to one-photon excitation with ultraviolet wavelengths, and DAPI-DNA displays a higher anisotropy for 3h nu at 885 nm than for 2h nu at 830 nm. We used 970-nm excitation of DAPI-stained chromosomes to obtain the first three-dimensional images with three-photon excitation. Three-photon excitation of DAPI-stained chromosomes at 970 nm was demonstrated by the power dependence in the fluorescence microscope.
The combination of two-photon excitation 4Pi-confocal fluorescence microscopy with image restoration leads to a fundamental improvement of three-dimensional resolution in the imaging of transparent, fluorescent specimens. The improvement is exemplified by randomly dispersed fluorescent beads and with actin filaments in a mouse fibroblast cell. For an illumination wavelength of 810 nm, we obtained lateral and axial full-width at half-maxima of point-like objects of 120-140 nm, and 70-100 nm, respectively. Fluorescent beads that are 150 nm apart are imaged with an intensity dip of ϳ25%. This amounts to a ϳsixfold improvement of the axial resolution over standard two-photon confocal microscopy. In the cell, the 3D-images reveal details otherwise not resolvable with focused light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.