Background Metastasized or unresectable melanoma has been the first malignant tumor to be successfully treated with checkpoint inhibitors. Nevertheless, about 40–50% of the patients do not respond to these treatments and severe side effects are observed in up to 60%. Therefore, there is a high need to identify reliable biomarkers predicting response. Tumor Mutation Burden (TMB) is a debated predictor for response to checkpoint inhibitors and early measurement of ctDNA can help to detect treatment failure to immunotherapy in selected melanoma patients. However, it has not yet been clarified how TMB and ctDNA can be used to estimate response to combined CTLA-4 and PD-1 antibody therapy in metastatic melanoma. Patients and methods In this prospective biomarker study, we included 35 melanoma patients with ipilimumab (anti-CTLA-4) and nivolumab (anti-PD-1) therapy. In all patients, a tumor panel of 710 tumor-associated genes was applied (tumor vs. reference tissue comparison), followed by repetitive liquid biopsies. Cell-free DNA was extracted and at least one driver mutation was monitored. Treatment response was evaluated after about three months of therapy. Results TMB was significantly higher in responders than in nonresponders and TMB > 23.1 Mut/Mb (TMB-high) was associated with a survival benefit compared to TMB ≤ 23.1 Mut/Mb (TMB-low or TMB-intermediate). Furthermore, a > 50% decrease of cell-free DNA concentration or undetectable circulating tumor DNA (ctDNA), measured by tumor-specific variant copies/ml of plasma at first follow-up three weeks after treatment initiation were significantly associated with response to combined immunotherapy and improved overall survival, respectively. It is noticeable that no patient with TMB ≤ 23.1 Mut/Mb and detectable or increasing ctDNA at first follow-up responded to immunotherapy. Conclusion High TMB, > 50% decrease of cell-free DNA concentration, and undetectable ctDNA at first follow-up seem to be associated with response and overall survival under combined immunotherapy. The evaluation of ctDNA and cell-free DNA three weeks after treatment initiation may be suitable for early assessment of efficacy of immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0659-0) contains supplementary material, which is available to authorized users.
Mutations in the synaptic nuclear envelope protein 1 (SYNE1) gene have been reported to cause a relatively pure, slowly progressive cerebellar recessive ataxia mostly identified in Quebec, Canada. Combining next-generation sequencing techniques and deep-phenotyping (clinics, magnetic resonance imaging, positron emission tomography, muscle histology), we here established the frequency, phenotypic spectrum and genetic spectrum of SYNE1 in a screening of 434 non-Canadian index patients from seven centres across Europe. Patients were screened by whole-exome sequencing or targeted panel sequencing, yielding 23 unrelated families with recessive truncating SYNE1 mutations (23/434 = 5.3%). In these families, 35 different mutations were identified, 34 of them not previously linked to human disease. While only 5/26 patients (19%) showed the classical SYNE1 phenotype of mildly progressive pure cerebellar ataxia, 21/26 (81%) exhibited additional complicating features, including motor neuron features in 15/26 (58%). In three patients, respiratory dysfunction was part of an early-onset multisystemic neuromuscular phenotype with mental retardation, leading to premature death at age 36 years in one of them. Positron emission tomography imaging confirmed hypometabolism in extra-cerebellar regions such as the brainstem. Muscle biopsy reliably showed severely reduced or absent SYNE1 staining, indicating its potential use as a non-genetic indicator for underlying SYNE1 mutations. Our findings, which present the largest systematic series of SYNE1 patients and mutations outside Canada, revise the view that SYNE1 ataxia causes mainly a relatively pure cerebellar recessive ataxia and that it is largely limited to Quebec. Instead, complex phenotypes with a wide range of extra-cerebellar neurological and non-neurological dysfunctions are frequent, including in particular motor neuron and brainstem dysfunction. The disease course in this multisystemic neurodegenerative disease can be fatal, including premature death due to respiratory dysfunction. With a relative frequency of ∼5%, SYNE1 is one of the more common recessive ataxias worldwide.
BackgroundMutations in the gene STUB1, encoding the protein CHIP (C-terminus of HSC70-interacting protein), have recently been suggested as a cause of recessive ataxia based on the findings in few Chinese families. Here we aimed to investigate the phenotypic and genotypic spectrum of STUB1 mutations, and to assess their frequency in different Caucasian disease cohorts.Methods300 subjects with degenerative ataxia (n = 167) or spastic paraplegia (n = 133) were screened for STUB1 variants by whole-exome-sequencing (n = 204) or shotgun-fragment-library-sequencing (n = 96). To control for the specificity of STUB1 variants, we screened an additional 1707 exomes from 891 index families with other neurological diseases.ResultsWe identified 3 ataxia patients (3/167 = 1.8%) with 4 novel missense mutations in STUB1, including 3 mutations in its tetratricopeptide-repeat domain. All patients showed evidence of pyramidal tract damage. Cognitive impairment was present only in one and hypogonadism in none of them. Ataxia did not start before age 48 years in one subject. No recessive STUB1 variants were identified in families with other neurological diseases, demonstrating that STUB1 variants are not simply rare polymorphisms ubiquitous in neurodegenerative disease.ConclusionsSTUB1-disease occurs also in Caucasian ataxia populations (1.8%). Our results expand the genotypic spectrum of STUB1-disease, showing that pathogenic mutations affect also the tetratricopeptide-repeat domain, thus providing clinical evidence for the functional importance of this domain. Moreover, they further delineate the phenotypic core features of STUB1-ataxia. Pyramidal tract damage is a common accompanying feature and can include lower limb spasticity, thus adding STUB1-ataxia to the differential diagnosis of “spastic ataxias”. However, STUB1 is rare in subjects with predominant spastic paraplegia (0/133). In contrast to previous reports, STUB1-ataxia can start even above age 40 years, and neither hypogonadism nor prominent cognitive impairment are obligatory features.
Objective:To explore the phenotypic spectrum and pathophysiology of human disease deriving from mutations in the CNTNAP1 gene.Methods:In a field study on consanguineous Palestinian families, we identified 3 patients carrying homozygous mutations in the CNTNAP1 gene using whole-exome sequencing. An unrelated Irish family was detected by screening the GENESIS database for further CNTNAP1 mutations. Neurophysiology, MRI, and nerve biopsy including electron microscopy were performed for deep phenotyping.Results:We identified 3 novel CNTNAP1 mutations in 5 patients from 2 families: c.2015G>A:p.(Trp672*) in a homozygous state in family 1 and c.2011C>T:p.(Gln671*) in a compound heterozygous state with c.2290C>T:p.(Arg764Cys) in family 2. Affected patients suffered from a severe CNS disorder with hypomyelinating leukodystrophy and peripheral neuropathy of sensory-motor type. Arthrogryposis was present in 2 patients but absent in 3 patients. Brain MRI demonstrated severe hypomyelination and secondary cerebral and cerebellar atrophy as well as a mega cisterna magna and corpus callosum hypoplasia. Nerve biopsy revealed very distinct features with lack of transverse bands at the paranodes and widened paranodal junctional gaps.Conclusions:CNTNAP1 mutations have recently been linked to patients with arthrogryposis multiplex congenita. However, we show that arthrogryposis is not an obligate feature. CNTNAP1-related disorders are foremost severe hypomyelinating disorders of the CNS and the peripheral nervous system. The pathology is partly explained by the involvement of CNTNAP1 in the proper formation and preservation of paranodal junctions and partly by the assumed role of CNTNAP1 as a key regulator in the development of the cerebral cortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.