Molpro (available at http://www.molpro.net) is a general‐purpose quantum chemical program. The original focus was on high‐accuracy wave function calculations for small molecules, but using local approximations combined with explicit correlation treatments, highly accurate coupled‐cluster calculations are now possible for molecules with up to approximately 100 atoms. Recently, multireference correlation treatments were also made applicable to larger molecules. Furthermore, an efficient implementation of density functional theory is available. © 2011 John Wiley & Sons, Ltd. This article is categorized under: Software > Quantum Chemistry
The previously developed DFT-SAPT approach, which combines symmetry-adapted intermolecular perturbation theory (SAPT) with a density-functional theory (DFT) representation of the monomers, has been implemented by using density fitting of two-electron objects. This approach, termed DF-DFT-SAPT, scales with the fifth power of the molecular size and with the third power upon increase of the basis set size for a given dimer, thus drastically reducing the cost of the conventional DFT-SAPT method. The accuracy of the density fitting approximation has been tested for the ethyne dimer. It has been found that the errors in the interaction energies due to density fitting are below 10(-3) kcal/mol with suitable auxiliary basis sets and thus one or two orders of magnitude smaller than the errors due to the use of a limited atomic orbital basis set. An investigation of three prominent structures of the benzene dimer, namely, the T shaped, parallel displaced, and sandwich geometries, employing basis sets of up to augmented quadruple-zeta quality shows that DF-DFT-SAPT outperforms second-order Moller-Plesset theory (MP2) and gives total interaction energies which are close to the best estimates inferred from combining the results of MP2 and coupled-cluster theory with single, double, and perturbative triple excitations.
A new implementation of local second-order Mo/ller-Plesset perturbation theory (LMP2) is presented for which asymptotically all computational resources (CPU, memory, and disk) scale only linearly with the molecular size. This is achieved by (i) using orbital domains for each electron pair that are independent of molecular size; (ii) classifying the pairs according to a distance criterion and neglecting very distant pairs; (iii) treating distant pairs by a multipole approximation, and (iv) using efficient prescreening algorithms in the integral transformation. The errors caused by the various approximations are negligible. LMP2 calculations on molecules including up to 500 correlated electrons and over 1500 basis functions in C1 symmetry are reported, all carried out on a single low-cost personal computer.
A new implementation of local coupled-cluster theory with single and double excitations (LCCSD) is presented for which asymptotically all computational resources (CPU, memory, and disk) scale only linearly with the molecular size. This is achieved by: (i) restricting the correlation space for each electron pair to domains that are independent of molecular size; (ii) classifying the pairs according to a distance criterion and treating only strong pairs at the highest level; (iii) using efficient prescreening algorithms in the integral transformation and other integral-direct procedures; and (iv) neglect of small couplings of electron pairs that are far apart from each other. The errors caused by the various approximations are negligible. LCCSD calculations on molecules including up to 300 correlated electrons and over 1000 basis functions in C1 symmetry are reported, all carried out on a workstation.
The accurate prediction of enzyme kinetics from first principles is one of the central goals of theoretical biochemistry. Currently there is considerable debate [1][2][3] about the applicability of transition state theory (TST) to compute rate constants of enzyme-catalyzed reactions. Classical TST is known to be insufficient in some cases, but corrections for dynamical recrossing and quantum mechanical tunneling can be included. [1,2,4] Many effects that go beyond the framework of TST have been proposed, particularly focusing on the possible role of protein dynamics and conformational effects on the enzyme activity. Unfortunately, the overall importance of these effects for the effective reaction rate is difficult (if not impossible) to determine experimentally. However, if one could compute the quasi-thermodynamical free energy of activation with chemical accuracy (i.e. 1 kcal mol À1 ), comparison with the effective measured free energy of activation would directly show the importance of other effects.Combined quantum mechanical/molecular mechanical (QM/MM) methods have become an important tool for computational modeling of enzyme-catalyzed reactions. Only the substrate(s) and relevant residues in the active site are treated quantum mechanically, the rest of the protein is described at the empirical MM level. This lowers the computational expense, making it possible to treat large enzyme systems and the surrounding solvent, and to sample phase space. Nevertheless, the number of QM atoms is still relatively large, and until now only low levels of QM theory, such as semiempirical methods or density functional theory (DFT), have been feasible. Semiempirical methods, though applicable to large systems, are generally not accurate enough because computed free energies of activation may have an error of ten or more kcal mol À1 . DFT (especially with the B3LYP functional [5] ) offers improved accuracy but still lacks key physical interactions (e.g., dispersion). Often, DFT underestimates barrier heights by several kcal mol À1 , which cannot be systematically improved. Thus, when theoretical barriers do not agree with those from experiment, it is not clear whether the discrepancy arises from deficiencies in the electronic structure theory and the sampling, in the experimental observations, or in the underlying theoretical framework of QM/MM and TST.Consequently, there is a need for high-level electronic structure calculations for reliable predictions of enzyme reactivity. The ab initio electron correlation methods MP2 (Møller-Plesset second-order perturbation theory), CCSD (coupled-cluster theory with single and double excitations), and CCSD(T) (CCSD with a perturbative treatment of triple excitations) provide a well-established hierarchy that converge reliably to give high accuracy, and rate constants of gasphase reactions involving only a few atoms can be predicted with error bars comparable to those found experimentally. [6,7] However, the computational expense of these methods increases very rapidly with the number o...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.