Introduction The THUNDER study provides an analysis of treatment patterns and outcomes in UK patients with severe or moderate haemophilia A (SHA/MHA) in 2015. Methods Patients with SHA or MHA registered with the UK National Haemophilia Database (NHD) were segregated by severity, inhibitor status and age. Haemophilia joint health score (HJHS) was derived from NHD records and treatment regimen and annualized bleed/joint‐bleed rate (ABR/AJBR) from Haemtrack (HT) in HT‐compliant patients. Results We report 1810 patients with SHA and 864 with MHA. Prophylaxis was used in 94.9% (n = 130/137) of HT‐compliant children <12 years with SHA, falling to 74.1% (n = 123/166) aged ≥40 years. Median ABR increased with age (1.0, IQR 0.0‐5.0, <12 years; 3.0 IQR, 1.0‐8.0, ≥40 years). Inhibitors were present in 159 (8.8%) SHA and 34 (3.9%) MHA. Median ABR increased from 2.0 (<12 years) to 21.0 (≥40 years) in SHA inhibitor patients using prophylaxis. Prophylaxis was used by 68.8% of HT‐compliant MHA patients (n = 106) (median FVIII baseline 0.01 IU/mL) associated with a median (IQR) ABR of 3.0 (1.0‐7.0). Median HJHS (n = 453) increased with age in SHA and MHA. Median (IQR) HJHS was higher in SHA inhibitor (17.0, 0.0‐64.5) than non‐ or past inhibitor patients (7.0, 0.0‐23.0). Conclusions Increasing ABR with age persists despite current prophylaxis regimens. SHA and MHA had similar ABR/AJBR and HJHS, leading to a suspicion that a subgroup of MHA may be relatively undertreated. More intensive prophylaxis may improve outcomes, but this requires further study.
The cellular DEAD-box protein DDX3 was recently shown to be essential for hepatitis C virus (HCV) replication. Prior to that, we had reported that HCV core binds to DDX3 in yeast-two hybrid and transient transfection assays. Here, we confirm by co-immunoprecipitation that this interaction occurs in cells replicating the JFH1 virus. Consistent with this result, immunofluorescence staining of infected cells revealed a dramatic redistribution of cytoplasmic DDX3 by core protein to the virus assembly sites around lipid droplets. Given this close association of DDX3 with core and lipid droplets, and its involvement in virus replication, we investigated the importance of this host factor in the virus life cycle. Mutagenesis studies located a single amino acid in the N-terminal domain of JFH1 core that when changed to alanine significantly abrogated this interaction. Surprisingly, this mutation did not alter infectious virus production and RNA replication, indicating that the core–DDX3 interaction is dispensable in the HCV life cycle. Consistent with previous studies, siRNA-led knockdown of DDX3 lowered virus production and RNA replication levels of both WT JFH1 and the mutant virus unable to bind DDX3. Thus, our study shows for the first time that the requirement of DDX3 for HCV replication is unrelated to its interaction with the viral core protein.
PCSK9 (proprotein convertase subtilisin/kexin type 9) promotes degradation of the LDLR [LDL (low-density lipoprotein) receptor] through an as-yet-undefined mechanism, leading to a reduction in cellular LDLc (LDL-cholesterol) and a concomitant increase in serum LDLc. Central to the function of PCSK9 is a direct protein–protein interaction formed with the LDLR. In the present study, we investigated a strategy to modulate LDL uptake by blocking this interaction using specific antibodies directed against PCSK9. Studies using surface plasmon resonance demonstrated that direct binding of PCSK9 to the LDLR could be abolished with three different anti-PCSK9 antibodies. Two of these antibodies were raised against peptide epitopes in a region of the catalytic domain of PCSK9 that is involved in the interaction with the LDLR. Such antibodies restored LDL uptake in HepG2 cells treated with exogenous PCSK9 and in HepG2 cells engineered to overexpress recombinant PCSK9. This latter observation indicates that antibodies blocking the PCSK9–LDLR interaction can inhibit the action of PCSK9 produced endogenously in a cell-based system. These antibodies also disrupted the higher-affinity interaction between the natural gain-of-function mutant of PCSK9, D374Y, and the LDLR in both the cell-free and cell-based assays. These data indicate that antibodies targeting PCSK9 can reverse the PCSK9-mediated modulation of cell-surface LDLRs.
Antibody-based drugs, which now represent the dominant biologic therapeutic modality, are used to modulate disparate signaling pathways across diverse disease indications. One fundamental premise that has driven this therapeutic antibody revolution is the belief that each monoclonal antibody exhibits exquisitely specific binding to a single-drug target. Herein, we review emerging evidence in antibody off-target binding and relate current key findings to the risk of failure in therapeutic development. We further summarize the current state of understanding of structural mechanisms underpining the different phenomena that may drive polyreactivity and polyspecificity, and highlight current thinking on how de-risking studies may be best implemented in the screening triage. We conclude with a summary of what we believe to be key observations in the field to date, and a call for the wider antibody research community to work together to build the tools needed to maximize our understanding in this nascent area.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.