Zoonotic infections caused by Salmonella enterica serovar Typhimurium pose a constant threat to consumer health, with the pig being a particularly major source of multidrug-resistant isolates. Vaccination, as a promising approach to reduce colonization and shedding, has been scarcely used, as it interferes with current control programs relying on serology as a means of herd classification. In order to overcome this problem, we set out to develop a negative-marker vaccine allowing the differentiation of infected from vaccinated animals (DIVA). Applying an immunoproteomic approach with two-dimensional gel electrophoresis, Western blot, and quadrupole time-of-flight tandem mass spectrometry, we identified the OmpD protein as a suitable negative marker. Using allelic exchange, we generated an isogenic mutant of the licensed live vaccine strain Salmoporc and showed that virulence of Salmoporc and that of the mutant strain, Salmoporc⌬ompD, were indistinguishable in BALB/c mice. In a pig infection experiment including two oral immunizations with Salmoporc⌬ompD and challenge with a multiresistant S. enterica serovar Typhimurium DT104 clinical isolate, we confirmed the protective efficacy of Salmoporc⌬ompD in pigs, showing a significant reduction of both clinical symptoms and colonization of lymph nodes and intestinal tract. OmpD immunogenic epitopes were determined by peptide spot array analyses. Upon testing of several 9-mer peptides, each including an immunogenic epitope, one peptide (positions F 100 to Y 108 ) that facilitated the detection of infected animals independent of their vaccination status (DIVA function) was identified. The approach described overcomes the problems currently limiting the use of bacterial live vaccines and holds considerable potential for future developments in the field.
Actinobacillus pleuropneumoniae is among the most important pathogens worldwide in pig production. The agent can cause severe economic losses due to decreased performance, acute or chronic pleuropneumonia and an increased incidence of death. Therapeutics cannot be used in a sustainable manner, and vaccination is not always available, but discovering more about host defence and disease mechanisms might lead to new methods of prophylaxis. The aim of the present study was to detect quantitative trait loci (QTL) associated with resistance/susceptibility to A. pleuropneumoniae. Under controlled conditions, 170 F2 animals of a Hampshire/Landrace family, with known differences in founder populations regarding A. pleuropneumoniae resistance, were challenged with an A. pleuropneumoniae serotype 7 aerosol followed by a detailed clinical, radiographic, ultrasonographic, pathological and bacteriological examination. F2 pigs were genotyped with 159 microsatellite markers. Significant QTL were identified on Sus scrofa chromosomes (SSC) 2, 6, 12, 13, 16, 17 and 18. They explained 6-22% of phenotypic variance. One QTL on SSC2 reached significance on a genome-wide level for five associated phenotypic traits. A multiple regression analysis revealed a combinatory effect of markers SWR345 (SSC2) and S0143 (SSC12) on Respiratory Health Score, Clinical Score and the occurrence of death. The results indicate the genetic background of A. pleuropneumoniae resistance in swine and provide new insights into the genetic architecture of resistance/susceptibility to porcine pleuropneumonia. The results will be helpful in identifying the underlying genes and mechanisms.
The enrichment of open reading frames (ORFs) from large gene libraries and the presentation of the corresponding polypeptides on filamentous phage M13 (phage display) is frequently used to identify binding partners of unknown ORFs. In particular phage display is a valuable tool for the identification of pathogen-related antigens and a first step for the development of new diagnostics and therapeutics. Here, we introduce a significant improvement of phage-based ORF enrichment by using Hyperphage, a helperphage with a truncated gIII. The methods allow both the enrichment of ORFs from cDNA libraries and the display of the corresponding polypeptides on phage, thus combining ORF enrichment with a screening for binding in one step without any further subcloning steps. We demonstrated the benefits of the method by isolating the sequences encoding two predicted immunogenic epitopes of the outer membrane protein D encoding gene (ompD) of Salmonella typhimurium. Here, we showed that when using a mixture of three constructs with only one containing an ORF solely this correct construct could be reisolated in phage particles. Further; both epitopes were detected by enzyme-linked immunosorbent assay (ELISA), demonstrating correct translation of fusion proteins. Furthermore, the enrichment system was evaluated by the enrichment of ORFs from total cDNA of lymphocytes. Here, we could show that 60% of the phage contained ORFs, which is an increase of an order of magnitude compared with conventional phage expression system. Together these data show that the Hyperphage-based enrichment system significantly improves the enrichment of ORFs and directly allows the display of the corresponding polypeptide on bacteriophage M13.
Actinobacillus (A.) pleuropneumoniae is among the most important pathogens in pig. The agent causes severe economic losses due to decreased performance, the occurrence of acute or chronic pleuropneumonia, and an increase in death incidence. Since therapeutics cannot be used in a sustainable manner, and vaccination is not always available, new prophylactic measures are urgently needed. Recent research has provided evidence for a genetic predisposition in susceptibility to A. pleuropneumoniae in a Hampshire × German Landrace F2 family with 170 animals. The aim of the present study is to characterize the expression response in this family in order to unravel resistance and susceptibility mechanisms and to prioritize candidate genes for future fine mapping approaches. F2 pigs differed distinctly in clinical, pathological, and microbiological parameters after challenge with A. pleuropneumoniae. We monitored genome-wide gene expression from the 50 most and 50 least susceptible F2 pigs and identified 171 genes differentially expressed between these extreme phenotypes. We combined expression QTL analyses with network analyses and functional characterization using gene set enrichment analysis and identified a functional hotspot on SSC13, including 55 eQTL. The integration of the different results provides a resource for candidate prioritization for fine mapping strategies, such as TF, TFRC, RUNX1, TCN1, HP, CD14, among others.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.