Alterations in brain cholesterol concentration and metabolism seem to be involved in Alzheimer's disease (AD). In fact, several experimental studies have reported that modification of cholesterol content can influence the expression of the amyloid precursor protein (APP) and amyloid beta peptide (Abeta) production. However, it remains to be determined if changes in neuronal cholesterol content may influence the toxicity of Abeta peptides and the mechanism involved. Aged mice, AD patients and neurons exposed to Abeta, show a significant increase in membrane-associated oxidative stress. Since Abeta is able to promote oxidative stress directly by catalytically producing H(2)O(2) from cholesterol, the present work analyzed the effect of high cholesterol incorporated into human neuroblastoma cells in Abeta-mediated neurotoxicity and the role of reactive oxygen species (ROS) generation. Neuronal viability was studied also in the presence of 24S-hydroxycholesterol, the main cholesterol metabolite in brain, as well as the potential protective role of the lipophilic statin, lovastatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.