Direct numerical simulation of two turbulent boundary layer flows has been performed. The boundary layers are both subject to a strong adverse pressure gradient. In one case a separation bubble is created while in the other the boundary layer is everywhere attached. The data from the simulations are used to investigate scaling laws near the wall, a crucial concept in turbulence models. Theoretical work concerning the inner region in a boundary layer under an adverse pressure gradient is reviewed and extended to the case of separation. Excellent agreement between theory and data from the direct numerical simulation is found in the viscous sub-layer, while a qualitative agreement is obtained for the overlap region.
Direct Numerical Simulations have been performed to study the effect of a partially oscillating wall on the turbulent boundary layer. Even though the Reynolds number is three times lower than in previous experimental investigations, many of the characteristic flow features are confirmed. The drag reduction is of the same magnitude as for higher Reynolds number flows, and the spatial development follows closely earlier experimental findings. The reduction of Reynolds shear stress is more pronounced than the decrease in streamwise and normal velocity fluctuations. In addition, comparisons are made with earlier numerical studies of channel flow. The sensitivity of the Reynolds shear stress on the time allowed for statistics collection is scrutinised, and the discrepancy in results from earlier experiments are, thus, explained.
Direct numerical simulations have been performed to study the drag reduction resulting from spatial oscillations of a segment of the wall under a turbulent boundary layer. The oscillating motion is imposed by utilizing a streamwise modulated spanwise wall forcing. The results are compared with earlier simulations using temporal oscillations with an identical segment and forcing amplitudes, and with a frequency related to the wavelength through a convective velocity. Two different oscillation amplitudes with equal oscillation wavelength have been used, which allows for a direct comparison between a relatively weak and strong forcing of the flow. The weaker forcing results in 25 % drag reduction while the stronger forcing, with twice the amplitude, yields 41 % drag reduction. Comparison with the temporal cases reveals drastically improved energy savings for the spatial oscillation technique, in accordance with earlier channel flow investigations. The streamwise variation of spanwise shear is shown to follow the analytical solution to the laminar Navier–Stokes equations derived under the assumption of constant friction velocity. Furthermore, the spanwise velocity profiles at various phases are compared with the analytical solution, and show very good agreement. The downstream development of the spatial Stokes layer thickness is theoretically estimated to be ${\sim }{x}^{1/ 15} $, in general agreement with the simulation data. The spatial variation of the spanwise Reynolds stress is investigated and compared with the variation in time for the temporal wall forcing cases. The controversy regarding a zero or non-zero production of spanwise Reynolds stress in the temporal case is elucidated. In addition, comparison with the spatial case reveals that a second production term originating from the downstream variation of the spanwise wall velocity has a negative contribution to the production, and hence relates to the larger drag reduction in the case of spatial forcing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.