A primary aim of microbial ecology is to determine patterns and drivers of community distribution, interaction, and assembly amidst complexity and uncertainty. Microbial community composition has been shown to change across gradients of environment, geographic distance, salinity, temperature, oxygen, nutrients, pH, day length, and biotic factors 1-6 . These patterns have been identified mostly by focusing on one sample type and region at a time, with insights extra polated across environments and geography to produce generalized principles. To assess how microbes are distributed across environments globally-or whether microbial community dynamics follow funda mental ecological 'laws' at a planetary scale-requires either a massive monolithic cross environment survey or a practical methodology for coordinating many independent surveys. New studies of microbial environments are rapidly accumulating; however, our ability to extract meaningful information from across datasets is outstripped by the rate of data generation. Previous meta analyses have suggested robust gen eral trends in community composition, including the importance of salinity 1 and animal association 2 . These findings, although derived from relatively small and uncontrolled sample sets, support the util ity of meta analysis to reveal basic patterns of microbial diversity and suggest that a scalable and accessible analytical framework is needed.The Earth Microbiome Project (EMP, http://www.earthmicrobiome. org) was founded in 2010 to sample the Earth's microbial communities at an unprecedented scale in order to advance our understanding of the organizing biogeographic principles that govern microbial commu nity structure 7,8 . We recognized that open and collaborative science, including scientific crowdsourcing and standardized methods 8 , would help to reduce technical variation among individual studies, which can overwhelm biological variation and make general trends difficult to detect 9 . Comprising around 100 studies, over half of which have yielded peer reviewed publications (Supplementary Table 1), the EMP has now dwarfed by 100 fold the sampling and sequencing depth of earlier meta analysis efforts 1,2 ; concurrently, powerful analysis tools have been developed, opening a new and larger window into the distri bution of microbial diversity on Earth. In establishing a scalable frame work to catalogue microbiota globally, we provide both a resource for the exploration of myriad questions and a starting point for the guided acquisition of new data to answer them. As an example of using this Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of r...
Abstract. The effect of elevated seawater carbon dioxide (CO 2 ) on the activity of a natural bacterioplankton community in an Arctic fjord system was investigated by a mesocosm perturbation study in the frame of the European Project on Ocean Acidification (EPOCA). A pCO 2 range of 175-1085 µatm was set up in nine mesocosms deployed in the Kongsfjorden (Svalbard). The activity of natural extracellular enzyme assemblages increased in response to acidification. Rates of β-glucosidase and leucine-aminopeptidase increased along the gradient of mesocosm pCO 2 . A decrease in seawater pH of 0.5 units almost doubled rates of both enzymes.Heterotrophic bacterial activity was closely coupled to phytoplankton productivity in this experiment. The bacterioplankton community responded to rising chlorophyll a concentrations after a lag phase of only a few days with increasing protein production and extracellular enzyme activity. Time-integrated primary production and bacterial protein production were positively correlated, strongly suggesting that higher amounts of phytoplankton-derived organic matter were assimilated by heterotrophic bacteria at increased primary production. Primary production increased under high pCO 2 in this study, and it can be suggested that the efficient heterotrophic carbon utilisation had the potential to counteract the enhanced autotrophic CO 2 fixation. However, our results also show that beneficial pCO 2 -related effects on bacterial activity can be mitigated by the top-down control of bacterial abundances in natural microbial communities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.