Gas turbine is a complex system operating in non-stationary operation conditions for which traditional model-based modeling approaches have poor generalization capabilities. To address this, an investigation of a novel data-driven neural networks based model approach for a three-spool aero-derivative gas turbine engine (ADGTE) for power generation during its loading and unloading conditions is reported in this paper. For this purpose, a non-linear autoregressive network with exogenous inputs (NARX) is used to develop this model in MATLAB environment using operational closed-loop data collected from Siemens (SGT-A65) ADGTE. Inspired by the way biological neural networks process information and by their structure which changes depending on their function, multiple-input single-output (MISO) NARX models with different configurations were used to represent each of the ADGTE output parameters with the same input parameters. Usage of a single neural network to represent each of the system output parameters may not be able to provide an accurate prediction for unseen data and as a consequence, provides poor generalization. To overcome this problem, an ensemble of MISO NARX models is used to represent each output parameter. The major challenge of the ensemble generation is to decide how to combine results produced by the ensemble's components. In this paper, a novel hybrid dynamic weighting method (HDWM) is proposed. The simulation results show improvement in accuracy and robustness by using the proposed modeling approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.