Ventricular assist devices (VADs) are an established therapeutic option 1 for patients with end-stage heart failure and provide circulatory support until myocardial recovery, heart transplantation or as destination therapy. Over the last decade, mechanical circulatory support has further improved patient survival and quality of life due to improvements in the design and durability of the devices. 2 However, infection remains a major adverse event and a relevant cause of morbidity and mortality in VAD recipients 2 with considerable best practices variation regarding infection prevention and management and driveline exit site care. 3,4 Infection occurs in up to 60% of VAD patients 4 and is the most frequent adverse event during the first 3 months
Engineered small diameter vascular grafts must closely match mechanical characteristics of native vessels and exhibit stimulus-responsive bioactivity. In this study, mechanical homogeneity of electrospun small diameter polyurethane grafts as well as spontaneous attachment, proliferation, and adhesion molecule expression of endothelial cells (EC) in their presence was studied in vitro. Axial and circumferential tensile strengths were measured and found to be twofold higher in the circumferential direction. EC attachment was easily achieved without precoating the fiber matrix. Stimulation of EC with interleukin-1beta (IL-1beta) led to a statistically significant upregulation of the adhesion molecules E-Selectin, ICAM-1, and VCAM-1. Quantification of adhesion molecule expression by means of energy-dispersive X-ray microanalysis revealed no differences in the stimulatory responses of EC cultured on electrospun polyurethane when compared with cells grown on tissue culture-treated cover slips. Summarizing, highly uniform small diameter polyurethane grafts were fabricated and shown to allow spontaneous EC attachment. The synthetic graft surface neither impaired the endothelial response toward IL-1beta stimulation nor did it adversely affect the regulation of expression of endothelial adhesion molecules.
No small-diameter synthetic graft has yet shown comparable performance to autologous vessels. Synthetic conduits fail due to their inherent surface thrombogenicity and the development of intimal hyperplasia. In addressing these shortcomings, electrospinning offers an interesting alternative to other nanostructured, cardiovascular substitutes because of the close match of electrospun materials to the biomechanical and structural properties of native vessels. In this study, we investigated the in vivo behavior of electrospun, small-diameter conduits in a rat model. Vascular grafts composed of polyurethane were fabricated by electrospinning. Prostheses were implanted into the abdominal aorta in 40 rats for either 7 days, 4 weeks, 3 months, or 6 months. Retrieved specimens were evaluated by histology, immunohistochemical staining, confocal laser scanning microscopy, and scanning electron microscopy. At all time points, we found no evidence of foreign body reaction or graft degradation. The overall patency rate of the intravascular implants was 95%. Within 7 days, grafts revealed ingrowth of host cells. CD34+ cells increased significantly from 7 days up to 6 months of implantation (P < 0.05). Myofibroblasts and myocytes showed increasing cell numbers up to 3 months (P < 0.05). Ki67 staining indicated unaltered cell proliferation during the whole follow-up period. Besides biomechanical benefits, electrospun polyurethane grafts exhibit excellent biocompatibility in vivo. Cell immigration and differentiation seems to be promoted by the nanostructured artificial matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.