Samples consisting of one ferromagnetic and one diamagnetic component which are immiscible at the thermodynamic equilibrium (Co-Cu, Fe-Cu, Fe-Ag) are processed by high-pressure torsion at various compositions. The received microstructures are investigated by electron microscopy and synchrotron X-ray diffraction, showing a microstructural saturation. Results gained from microstructural investigations are correlated to magnetometry data. The Co-Cu samples show mainly ferromagnetic behavior and a decrease in coercivity with increasing Co-content. The saturation microstructure of Fe-Cu samples is found to be dual phase. Results of magnetic measurements also revealed the occurrence of two different magnetic phases in this system. For Fe-Ag, the microstructural and magnetic results indicate that no intermixing between the elemental phases takes place.
Bulk metallic samples were synthesized from different binary powder mixtures consisting of elemental Cu, Co, and Fe using severe plastic deformation. Small particles of the ferromagnetic phase originate in the conductive Cu phase, either by incomplete dissolution or by segregation phenomena during the deformation process. These small particles are known to give rise to granular giant magneto-resistance. Taking advantage of the simple production process, it is possible to perform a systematic study on the influence of processing parameters and material compositions on the magneto-resistance. Furthermore, it is feasible to tune the magneto-resistive behavior as a function of the specimens’ chemical composition. It was found that specimens of low ferromagnetic content show an almost isotropic drop in resistance in a magnetic field. With increasing ferromagnetic content, percolating ferromagnetic phases cause an anisotropy of the magneto-resistance. By changing the parameters of the high pressure torsion process, i.e., sample size, deformation temperature, and strain rate, it is possible to tailor the magnitude of giant magneto-resistance. A decrease in room temperature resistivity of ~3.5% was found for a bulk specimen containing an approximately equiatomic fraction of Co and Cu.
High-pressure torsion (HPT), a technique of severe plastic deformation (SPD), is shown as a promising processing method for exchange-spring magnetic materials in bulk form. Powder mixtures of Fe and SmCo5 are consolidated and deformed by HPT exhibiting sample dimensions of several millimetres, being essential for bulky magnetic applications. The structural evolution during HPT deformation of Fe-SmCo5 compounds at room- and elevated- temperatures of chemical compositions consisting of 87, 47, 24 and 10 wt.% Fe is studied and microstructurally analysed. Electron microscopy and synchrotron X-ray diffraction reveal a dual-phase nanostructured composite for the as-deformed samples with grain refinement after HPT deformation. SQUID magnetometry measurements show hysteresis curves of an exchange coupled nanocomposite at room temperature, while for low temperatures a decoupling of Fe and SmCo5 is observed. Furthermore, exchange interactions between the hard- and soft-magnetic phase can explain a shift of the hysteresis curve. Strong emphasis is devoted to the correlation between the magnetic properties and the evolving nano-structure during HPT deformation, which is conducted for a 1:1 composition ratio of Fe to SmCo5. SQUID magnetometry measurements show an increasing saturation magnetisation for increasing strain γ and a maximum of the coercive field strength at a shear strain of γ = 75.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.