Glucagon-like peptide 2 (GLP-2) is a 33-aa proglucagon-derived peptide produced by intestinal enteroendocrine cells. GLP-2 stimulates intestinal growth and upregulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. Moreover, GLP-2 prevents intestinal hypoplasia resulting from total parenteral nutrition. However, the mechanism underlying these actions has remained unclear. nM). GLP-2 analogs that activated GLP-2R signal transduction in vitro displayed intestinotrophic activity in vivo.These results strongly suggest that GLP-2, like glucagon and GLP-1, exerts its actions through a distinct and specific novel receptor expressed in its principal target tissue, the gastrointestinal tract.Glucagon-like peptides (GLPs) encoded by the proglucagon gene play key roles in glucose homeostasis, gastric emptying, insulin secretion, and appetite regulation (1). Glucagon and GLP-1 exert their effects through distinct G protein-coupled receptors (GPCRs). In contrast, unique receptors for GLP-2, glicentin, and oxyntomodulin have not yet been identified, despite considerable attempts at receptor isolation via classical molecular biology approaches (2). Recent studies have shown that GLP-2 is a potent intestinal growth factor that stimulates crypt cell proliferation and inhibits epithelial apoptosis (3). GLP-2 promotes epithelial proliferation in both small and large intestine; however, the mechanisms utilized by GLP-2 for promotion of intestinal growth remain unclear.To understand the mechanisms underlying GLP-2 action, we have carried out studies directed at the identification and cloning of the putative GLP-2 receptor. We now have isolated rat and human cDNAs encoding GLP-2-responsive GPCRs, which show highest similarity to receptors for glucagon and GLP-1. The GLP-2R is coupled to activation of adenylate cyclase, and the receptor is expressed selectively in rat hypothalamus and the gastrointestinal tract, known targets of GLP-2 action. These findings establish GLP-2 as a novel hormone that, like glucagon and GLP-1, exerts its actions through a distinct receptor expressed in a highly tissuerestricted manner. The GLP-2R should provide an important target for isolation of small molecules mimicking GLP-2 action and for future studies delineating specific mechanisms underlying GLP-2 action in the gut and central nervous system.
Species-specific differences in the enzymatic inactivation of peptides is an important consideration in the evaluation of therapeutic efficacy. We demonstrate that glucagon-like peptide 2 (GLP-2), shown to be highly intestinotrophic in mice, promotes an increase in intestinal villus height but has no trophic effect on small bowel weight in rats. The reduced intestinotrophic activity of GLP-2 in rats is attributable to inactivation by the enzyme dipeptidyl peptidase IV (DPP-IV). GLP-2(1-33) was degraded to GLP-2(3-33) following incubation with human placental DPP-IV or rat serum but not by serum from DPP-IV-deficient rats. Administration of rat GLP-2 to DPP-IV-deficient rats was associated with markedly increased bioactivity of rat GLP-2 resulting in a significant increase in small bowel weight. A synthetic GLP-2 analog, r[Gly2]GLP-2, with an alanine to glycine substitution at position 2, was resistant to cleavage by both DPP-IV and rat serum in vitro. Treatment of wild-type rats with r[Gly2]GLP-2 produced a statistically significant increase in small bowel mass. DPP-IV-mediated inactivation of GLP-2 is a critical determinant of the growth factor-like properties of GLP-2.
The fidelity of protein biosynthesis in any cell rests on the accuracy of aminoacylation of tRNA. The exquisite specificity of this reaction is critically dependent on the correct recognition of tRNA by aminoacyl-tRNA synthetases. It is shown here that the relative concentrations of a tRNA and its cognate aminoacyl-tRNA synthetase are normally well balanced and crucial for maintenance of accurate aminoacylation. When Escherichia coli Gln-tRNA synthetase is overproduced in vivo, it incorrectly acylates the supF amber suppressor tRNA(Tyr) with Gln. This effect is abolished when the intracellular concentration of the cognate tRNA(Gln2) is also elevate. These data indicate that the presence of aminoacyl-tRNA synthetase and the cognate tRNAs in complexed form, which requires the proper balance of the two macromolecules, is critical in maintaining the fidelity of protein biosynthesis. Thus, limits exist on the relative levels of tRNAs and aminoacyl-tRNA synthetases within a cell.
The human immunodeficiency virus type 1 Tat protein binds to an RNA stem-loop structure called TAR which is present at the 5' end of all human immunodeficiency virus type 1 transcripts. This binding is centered on a bulge within the stem of TAR and is an essential step in the trans-activation process which results in a dramatic increase in viral gene expression. By analysis of a series of TAR derivatives produced by transcription or direct chemical synthesis, we determined the structural and chemical requirements for Tat binding. Tat binds well to structures which have a bulge of two to at least five unpaired bases bounded on both sides by a double-stranded RNA stem. This apparent flexibility in bulge size is in contrast to an absolute requirement for an unpaired uridine (U) in the 5'-most position of the bulge (+23). Substitution of the U with either natural bases or chemical analogs demonstrated that the imido group at the N-3 position and, possibly, the carbonyl group at the C-4 position of U are critical for Tat binding. Cytosine (C), which differs from U at only these positions, is not an acceptable substitute. Furthermore, methylation at N-3 abolishes binding. While methylation of U at the C-5 position has little effect on binding, fluorination reduces it, possibly because of its effects on relative tautomer stability at the N-3 and C-4 positions. Thus, we have identified key moieties in the U residue that are of importance for the binding of Tat to TAR RNA. We hypothesize that the invariant U is involved in hydrogen bond interactions with either another part of TAR or the TAR-binding domain in Tat.
Glucagon-like peptide-2 (GLP-2) is a 33 amino acid gastrointestinal hormone that regulates epithelial growth in the intestine. Dipeptidylpeptidase IV cleaves GLP-2 at the position 2 alanine, resulting in the inactivation of peptide activity. To understand the structural basis for GLP-2 action, we studied receptor binding and activation for 56 GLP-2 analogues with either position 2 substitutions or alanine replacements along the length of the peptide. The majority of position 2 substitutions exhibited normal to enhanced GLP-2 receptor (GLP-2R) binding; in contrast, position 2 substitutions were less well tolerated in studies of receptor activation as only Gly, Ile, Pro, alpha-aminobutyric acid, D-Ala, or nor-Val substitutions exhibited enhanced GLP-2R activation. In contrast, alanine replacement at positions 5,6,17, 20, 22, 23, 25, 26, 30, and 31 led to diminished GLP-2R binding. Position 2 substitutions containing Asp, Leu, Lys, Met, Phe, Trp, and Tyr, and Ala substitutions at positions 12 and 21 exhibited normal to enhanced GLP-2R binding but greater than 75% reduction in receptor activation. D-Ala(2), Pro(2) and Gly(2), Ala(16) exhibited significantly lower EC(50)s for receptor activation than the parent peptide (p < 0.01-0.001). Circular dichroism analysis indicated that the enhanced activity of these GLP-2 analogues was independent of the alpha-helical content of the peptide. These results indicate that single amino acid substitutions within GLP-2 can confer structural changes to the ligand-receptor interface, allowing the identification of residues important for GLP-2R binding and receptor activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.