Three-terminal nanorelay structures were fabricated with multiwall carbon nanotubes (MWNTs). The nanotube relays were deflected by applying
a gate voltage until contact (mechanical and/or electrical) was made with a drain electrode, thus closing the circuit. It was possible to achieve
multiple switching cycles, showing that carbon nanotubes are suitable and practical systems for developing nanoelectromechanical devices
of this kind.
Cells naturally exist in a dynamic chemical environment, and therefore it is necessary to study cell behaviour under dynamic stimulation conditions in order to understand the signalling transduction pathways regulating the cellular response. However, until recently, experiments looking at the cellular response to chemical stimuli have mainly been performed by adding a stress substance to a population of cells and thus only varying the magnitude of the stress. In this paper we demonstrate an experimental method enabling acquisition of data on the behaviour of single cells upon reversible environmental perturbations, where microfluidics is combined with optical tweezers and fluorescence microscopy. The cells are individually selected and positioned in the measurement region on the bottom surface of the microfluidic device using optical tweezers. The optical tweezers thus enable precise control of the cell density as well as the total number of cells within the measurement region. Consequently, the number of cells in each experiment can be optimized while clusters of cells, that render subsequent image analysis more difficult, can be avoided. The microfluidic device is modelled and demonstrated to enable reliable changes between two different media in less than 2 s. The experimental method is tested by following the cycling of GFP-tagged proteins (Mig1 and Msn2, respectively) between the cytosol and the nucleus in Saccharomyces cerevisiae upon changes in glucose availability.
We report the observation of blackbody radiation from aligned multiwalled carbon nanotubes undergoing field emission. The light intensity correlates with fluctuations in the emission current. The onset of light emission occurs at an emission current of 1 mA/cm2 and corresponds to a temperature on the order of 1550 K. Beyond this critical current irreversible changes occur in the nanotube film. The correlation between light intensity and emission current provides convincing evidence for Joule heating and stable operation for nanotube temperatures up to at least 2000 K and emission current densities on the order of 10 mA/cm2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.