Visual sensitivity varies across the visual field in several characteristic ways. For example, sensitivity declines sharply in peripheral (vs. foveal) vision and is typically worse in the upper (vs. lower) visual field. These variations can affect processes ranging from acuity and crowding (the deleterious effect of clutter on object recognition) to the precision of saccadic eye movements. Here we examine whether these variations can be attributed to a common source within the visual system. We first compared the size of crowding zones with the precision of saccades using an oriented clock target and two adjacent flanker elements. We report that both saccade precision and crowded-target reports vary idiosyncratically across the visual field with a strong correlation across tasks for all participants. Nevertheless, both group-level and trial-by-trial analyses reveal dissociations that exclude a common representation for the two processes. We therefore compared crowding with two measures of spatial localization: Landolt-C gap resolution and three-dot bisection. Here we observe similar idiosyncratic variations with strong interparticipant correlations across tasks despite considerably finer precision. Hierarchical regression analyses further show that variations in spatial precision account for much of the variation in crowding, including the correlation between crowding and saccades. Altogether, we demonstrate that crowding, spatial localization, and saccadic precision show clear dissociations, indicative of independent spatial representations, whilst nonetheless sharing idiosyncratic variations in spatial topology. We propose that these topological idiosyncrasies are established early in the visual system and inherited throughout later stages to affect a range of higher-level representations.O ur sensitivity to visual stimuli varies substantially across the visual field with characteristic patterns that are evident across a wide range of tasks. Most notably, our ability to see fine detail decreases sharply as objects move into peripheral vision (1). These abilities are further disrupted by crowding, the impairment of object recognition in clutter, which also increases with eccentricity (2, 3). Both of these effects have been attributed to an overrepresentation of the fovea at the expense of peripheral vision, known as "cortical magnification" (4, 5), which has been observed in a range of retinotopically organized areas of the brain (6, 7). Here we ask whether other variations in visual sensitivity can similarly be attributed to topological principles within the visual system and consider whether these variations might share a common source.Variations across the visual field are particularly apparent with crowding, a process that presents the fundamental limitation on object recognition in peripheral vision (8). Crowding disrupts the recognition of a target object when flanker objects fall within a surrounding "interference zone." As well as increasing in size with eccentricity, these zones show an elliptical shap...
Whenever the eyes move, spatial attention must keep track of the locations of targets as they shift on the retina. This study investigated transsaccadic updating of visual attention to cued targets. While observers prepared a saccade, we flashed an irrelevant, but salient, color cue in their visual periphery and measured the allocation of spatial attention before and after the saccade using a tilt discrimination task. We found that just before the saccade, attention was allocated to the cue's future retinal location, its predictively "remapped" location. Attention was sustained at the cue's location in the world across the saccade, despite the change of retinal position whereas it decayed quickly at the retinal location of the cue, after the eye landed. By extinguishing the color cue across the saccade, we further demonstrate that the visual system relies only on predictive allocation of spatial attention, as the presence of the cue after the saccade did not substantially affect attentional allocation. These behavioral results support and extend physiological evidence showing predictive activation of visual neurons when an attended stimulus will fall in their receptive field after a saccade. Our results show that tracking of spatial locations across saccades is a plausible consequence of physiological remapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.