DL_POLY_3 is a general-purpose massively parallel molecular dynamics simulation package embedding a highly efficient set of methods and algorithms such as: Domain Decomposition (DD), Linked Cells (LC), Daresbury Advanced Fourier Transform (DAFT), Trotter derived Velocity Verlet (VV) integration and RATTLE. Written to support academic research, it has a wide range of applications and can run on a wide range of computers; from single processor workstations to multi-processor computers. The code development has placed particular emphasis on the efficient utilization of multi-processor power by optimised memory workload and distribution, which makes it possible to simulate systems of the order of tens of millions of particles and beyond. In this paper we discuss the new DL_POLY_3 design, and report on the performance, capability and scalability. We also discuss new features implemented to simulate highly non-equilibrium processes of radiation damage and analyse the structural damage during such processes. have introduced the Domain Decomposition (DD) 10 version, DL_POLY_3, to permit simulation of systems of the order of tens of millions of atoms and beyond. As we shall see in the Performance and discussion section, DL_POLY_3's inherent parallelism allows close to perfect parallelisation up to impressively high processor counts.
A new approach to the reverse Monte Carlo analysis of total scattering data from polycrystalline materials is presented. The essential new feature is the incorporation of an explicit analysis of the Bragg peaks using a profile refinement, taking account of the instrument resolution function. Other new features including fitting data from magnetic materials, modelling lattice site disorder and new restraint and constraint options. The new method is demonstrated by a brief review of studies carried out during its development. The new program RMCProfile represents a significant advance in the analysis of polycrystalline total scattering data, especially where the local structure is to be explored within the true constraints of the long-range average structure.
We show that silver(I) hexacyanocobaltate(III), Ag3[Co(CN)6], exhibits positive and negative thermal expansion an order of magnitude greater than that seen in other crystalline materials. This framework material expands along one set of directions at a rate comparable to the most weakly bound solids known. By flexing like lattice fencing, the framework couples this to a contraction along a perpendicular direction. This gives negative thermal expansion that is 14 times larger than in ZrW2O8. Density functional theory calculations quantify both the low energy associated with this flexibility and the role of argentophilic (Ag+...Ag+) interactions. This study illustrates how the mechanical properties of a van der Waals solid might be engineered into a rigid, useable framework.
ZIF-4, a metal-organic framework (MOF) with a zeolitic structure, undergoes a crystal-amorphous transition on heating to 300 degrees C. The amorphous form, which we term a-ZIF, is recoverable to ambient conditions or may be converted to a dense crystalline phase of the same composition by heating to 400 degrees C. Neutron and x-ray total scattering data collected during the amorphization process are used as a basis for reverse Monte Carlo refinement of an atomistic model of the structure of a-ZIF. The structure is best understood in terms of a continuous random network analogous to that of a-SiO2. Optical microscopy, electron diffraction and nanoindentation measurements reveal a-ZIF to be an isotropic glasslike phase capable of plastic flow on its formation. Our results suggest an avenue for designing broad new families of amorphous and glasslike materials that exploit the chemical and structural diversity of MOFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.