Human activity recognition (HAR) is a wide research topic in a field of computer science. Improving HAR can lead to massive breakthrough in humanoid robotics, robots used in medicine and in the field of autonomous vehicles. The system that is able to recognise human and its activity without any errors and anomalies would lead to safer and more empathetic autonomous systems. During this research work, multiple neural networks models, with different complexity, are being investigated. Each model is retrained on the proposed unique data set, gathered on automated guided vehicle (AGV) with the latest and the modest sensors used commonly on autonomous vehicles. The best model is picked out based on the final accuracy for action recognition. Best models pipeline is fused with YOLOv3, to enhance the human detection. In addition to pipeline improvement, multiple action direction estimation methods are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.