[1] Deep tremor under Shikoku, Japan, consists primarily, and perhaps entirely, of swarms of low-frequency earthquakes (LFEs) that occur as shear slip on the plate interface. Although tremor is observed at other plate boundaries, the lack of cataloged low-frequency earthquakes has precluded a similar conclusion about tremor in those locales. We use a network autocorrelation approach to detect and locate LFEs within tremor recorded at three subduction zones characterized by different thermal structures and levels of interplate seismicity: southwest Japan, northern Cascadia, and Costa Rica. In each case we find that LFEs are the primary constituent of tremor and that they locate on the deep continuation of the plate boundary. This suggests that tremor in these regions shares a common mechanism and that temperature is not the primary control on such activity.
[1] In May 2007 a network of global positioning systems (GPS) and seismic stations on the Nicoya Peninsula, of northern Costa Rica, recorded a slow-slip event accompanied by seismic tremor. The close proximity of the Nicoya Peninsula to the seismogenic part of the Cocos-Caribbean subduction plate boundary makes it a good location to study such events. Several centimeters of southwest motion were recorded by the GPS stations over a period of several days to several weeks, and the seismic stations recorded three distinct episodes of tremor during the same time span. Inversion of the surface displacement data for the depth and pattern of slip on the plate interface shows peak slip at a depth of 25-30 km, downdip of the main seismogenic zone. Estimated temperatures here are ∼250°-300°C, lower than in other subduction zones where events of this nature have been previously identified. There may also be a shallower patch of slip at ∼6 km depth. These results are significant in that they are the first to suggest that slow slip can occur at the updip transition from stick slip to stable sliding, and that a critical temperature threshold is not required for slow slip. Tremor and low-frequency earthquake locations are more difficult to determine. Our results suggest they occur on or near the plate interface at the same depth range as the deep slow slip, but not spatially colocated.
Abstract. The Ligurian Basin is located in the Mediterranean Sea to the north-west of Corsica at the transition from the Western Alpine orogen to the Apennine system and was generated by the south-eastward trench retreat of the Apennines–Calabrian subduction zone. Late-Oligocene-to-Miocene rifting caused continental extension and subsidence, leading to the opening of the basin. Yet it remains unclear if rifting caused continental break-up and seafloor spreading. To reveal its lithospheric architecture, we acquired a 130 km long seismic refraction and wide-angle reflection profile in the Ligurian Basin. The seismic line was recorded in the framework of SPP2017 4D-MB, a Priority Programme of the German Research Foundation (DFG) and the German component of the European AlpArray initiative, and trends in a NE–SW direction at the centre of the Ligurian Basin, roughly parallel to the French coastline. The seismic data were recorded on the newly developed GEOLOG recorder, designed at GEOMAR, and are dominated by sedimentary refractions and show mantle Pn arrivals at offsets of up to 70 km and a very prominent wide-angle Mohorovičić discontinuity (Moho) reflection. The main features share several characteristics (e.g. offset range, continuity) generally associated with continental settings rather than documenting oceanic crust emplaced by seafloor spreading. Seismic tomography results are complemented by gravity data and yield a ∼ 6–8 km thick sedimentary cover and the seismic Moho at 11–13 km depth below the sea surface. Our study reveals that the oceanic domain does not extend as far north as previously assumed. Whether Oligocene–Miocene extension led to extremely thinned continental crust or exhumed subcontinental mantle remains unclear. A low grade of mantle serpentinisation indicates a high rate of syn-rift sedimentation. However, rifting failed before oceanic spreading was initiated, and continental crust thickens towards the NE within the northern Ligurian Basin.
S U M M A R YThe structure and seismicity of the subduction zone of central Costa Rica have been investigated with local earthquake tomography down to ca. 50 km depth. Seismic traveltime data sets of three on-and offshore seismic networks were combined for a simultaneous inversion of hypocentre locations, 3-D structure of P-wave velocity and V p /V s ratio using about 2000 highquality events. The seismicity and slab geometry as well as V p and V p /V s show significant lateral variation along the subduction zone corresponding to the changes of the incoming plate which consists of serpentinized oceanic lithosphere in the northwest, a seamount province in the centre and the subducting Cocos Ridge in the southeast of the investigation area. Three prominent features can be identified in the V p and V p /V s tomograms: a high-velocity zone with a perturbation of 4-10 per cent representing the subducting slab, a low-velocity zone (10-20 per cent) in the forearc crust probably caused by deformation, fluid release and hydration and a low-velocity zone below the volcanic arc related to upwelling fluids and magma. Unlike previously suggested, the dip of the subducting slab does not decrease to the south. Instead, an average steepening of the plate interface from 30 • to 45 • is observed from north to south and a transition from a plane to a step-shaped plate interface. This is connected with a change in the deformation style of the overriding plate where roughly planar, partly conjugated, clusters of seismicity of regionally varying dip are observed. It can be shown that the central Costa Rica Deformation Belt represents a deep crustal transition zone extending from the surface down to 40 km depth. This transition zone indicates the lateral termination of the active part of the volcanic chain and seems to be related to the changing structure of the incoming plate as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.