IL-12 is a key cytokine in directing the development of type 1 Th cells, which are critical to eradicate intracellular pathogens such as Mycobacterium tuberculosis. Here, we report that mannose-capped lipoarabinomannans (ManLAMs) from Mycobacterium bovis bacillus Calmette-Guérin and Mycobacterium tuberculosis inhibited, in a dose-dependant manner, the LPS-induced IL-12 production by human dendritic cells. The inhibitory activity was abolished by the loss of the mannose caps or the GPI acyl residues. Mannan, which is a ligand for the mannose receptor (MR) as well as an mAb specific for the MR, also inhibited the LPS-induced IL-12 production by dendritic cells. Our results indicate that ManLAMs may act as virulence factors that contribute to the persistence of M. bovis bacillus Calmette-Guérin and M. tuberculosis within phagocytic cells by suppressing IL-12 responses. Our data also suggest that engagement of the MR by ManLAMs delivers a negative signal that interferes with the LPS-induced positive signals delivered by the Toll-like receptors.
Interleukin (IL)-12 is a proinflammatory cytokine that contributes to innate resistance and to the development of antigen-specific T cell responses. Among other effects, prostaglandin E2 (PGE2) inhibits the production of IL-12 by macrophages activated with lipopolysaccharide (LPS). Here we investigated the effects of PGE2 on human dendritic cells (DCs) which develop in the presence of GM-CSF and IL-4. We demonstrate that in the absence of LPS, PGE2 dose dependently stimulated the production of IL-12 by DCs. Although PGE2 alone stimulated the production of low amounts of IL-12 only, it synergized with tumor necrosis factor (TNF)-α to induce high levels of IL-12 production by DCs. Addition of TNF-α in the absence of PGE2 had no effect on IL-12 production. Conversely, in the presence of LPS, PGE2 inhibited IL-12 production by DCs in a dose-dependent manner. The combination of PGE2 and TNF-α efficiently silenced mannose receptor–mediated endocytosis in DCs and readily induced neo-expression of the CD83 antigen. In addition, the expression of various surface antigens such as major histocompatibility complex class I and II, adhesion, as well as costimulatory molecules was upregulated by this treatment. The effects of PGE2 on IL-12 synthesis and CD83 expression could be mimicked by dibutyryl-cAMP and forskolin, indicating that they were due to the intracellular elevation of cAMP levels. DC treated with PGE2 and TNF-α were most potent in stimulating allogeneic T cell proliferation. Our data demonstrate that PGE2 contributes to the maturation of human DCs and that PGE2 can be a potent enhancer of IL-12 production by human DCs.
Lipoarabinomannans are major mycobacterial antigens capable of modulating the host immune response; however, the molecular basis underlying the diversity of their immunological properties remain an open question. In this study a new extraction and purification approach was successfully applied to isolate ManLAMs (lipoarabinomannans with mannosyl extensions) from bacillus Calmette Gué rin leading to the obtention of two types of ManLAMs namely parietal and cellular. Structurally, they were found to differ by the percentage of mannooligosaccharide caps, 76 and 48%, respectively, and also, thanks to a new analytical method, by the structure of the phosphatidyl-myo-inositol anchor lipid moiety. A novel fatty acid in the mycobacterium genus assigned to a 12-O-(methoxypropanoyl)-12-hydroxystearic acid was the only fatty acid esterifying C-1 of the glycerol residue of the parietal ManLAMs, while the phosphatidyl unit of the cellular ManLAMs showed a large heterogeneity due to a combination of palmitic and tuberculostearic acid. Finally, parietal and cellular ManLAMs were found to differentially affect interleukin-8 and tumor necrosis factor-␣ secretion from human dendritic cells. We show that parietal but not cellular ManLAMs were able to stimulate tumor necrosis factor-␣ secretion from dendritic cells. From these studies we propose that the 1-[12-O-(methoxypropanoyl)-12-hydroxystearoyl]-sn-glycerol part is the major cytokineregulating component of the ManLAMs. It seems likely that modification of the ManLAM lipid part, which may occur in hostile environments, could regulate macrophagic mycobacterial survival by altering cytokine stimulation.Tuberculosis remains the leading cause of human death among the infectious diseases with over 3 million deaths each year (1). The decline in tuberculosis in the developed countries has been reversed by the tuberculosis cases arising in AIDS patients, among the homeless, and by the emergence of Mycobacterium tuberculosis strains resistant to the first-line drugs, which are isoniazid and ethambutol. Also, from different trials, the efficiency of BCG 1 vaccine to prevent tuberculosis was found to range from 0 to 80% (2, 3).Virulent mycobacteria survive and multiply within phagosomes of mononuclear phagocytes. Despite conflicting results, there is a consensus that phagosomes containing M. tuberculosis do not fuse with lysosomes and resist acidification (4). This survival can also be correlated with the macrophage bactericide activity, which appears to be modulated by mycobacterial cell wall components (5, 6).From a molecular point of view, cell wall lipoarabinomannans (LAMs) are clearly demonstrated to be pivotal mycobacterial antigens. They regulate TNF-␣ production by phagocyte (5) and block the transcriptional activation of INF-␥ (6), thereby influencing the intramacrophagic survival of mycobacteria. For instance, LAMs (PI-GAMs) from Mycobacterium smegmatis, a fast growing mycobacterium that does not survive inside the macrophages, were found to stimulate phagocyte TNF-␣ production ...
The mevalonate pathway for cholesterol biosynthesis and protein prenylation has been implicated in various aspects of tumor development and progression. Certain classes of drugs, such as statins and bisphosphonates, inhibit mevalonate metabolism and therefore have also been tested as antitumor agents. This concept is strongly supported by the recent finding that mutant p53, which is present in more than half of all human cancers, can significantly upregulate mevalonate metabolism and protein prenylation in carcinoma cells. The first evidence that mevalonate pathway inhibitors may have the potential to reverse the malignant phenotype has already been obtained. Moreover, recently discovered immunomodulatory properties of statins and bisphosphonates may also contribute to their known anticancer effects. Druginduced inhibition of protein prenylation may induce sequential cellular stress responses, including the unfolded protein response and autophagy, that eventually translate into inflammasome-dependent and caspase-1-mediated activation of innate immunity. This review focuses on these novel capabilities of mevalonate pathway inhibitors to beneficially affect tumor biology and contribute to tumor immune surveillance. Clin Cancer Res; 18(13); 3524-31. Ó2012 AACR.
Polypeptide growth factors are positive and negative regulators of prostatic growth and function. Expression and biological effects of epidermal growth factor (EGF), transforming growth factors (TGFs) α and β, fibroblast growth factors (FGFs), and insulin‐like growth factors (IGFs) in the prostate have been extensively studied. EGF and TGFα, which share the same receptor, are strong mitogens for prostatic epithelial and stromal cells. Their paracrine mode of action in normal tissue and early‐stage tumors is apparently altered towards an autocrine stimulation in hormone‐independent tumors, which gain the ability to produce TGFα by themselves. TGFβ has a dual role in the regulation of prostatic growth. It inhibits growth of prostatic epithelial cells in culture and mediates programmed cell death after androgen withdrawal. However, advanced prostatic carcinomas become insensitive to the inhibitory effect of TGFβ. Several members of the FGF family have been identified in the prostate. They are mainly or exclusively expressed in the stromal cells, and stimulate the epithelial cells. In the rat Dunning tumor model, progression is accompanied by distinct changes in the expression of FGFs and their receptors. In the hyperplastic tissue, basic FGF (bFGF) is accumulated. This growth factor is also a potent angiogenic inducer, expression of which may determine the metastatic capability of a tumor. IGFs are paracrine growth stimulators in the normal and hyperplastic prostate. It is still under consideration whether prostatic cancer cells gain the ability to produce IGF‐I by themselves and thus shift to an autocrine mode of IGF‐I stimulation. Growth factors also interact with the androgen‐signaling pathway. IGF‐I in particular, other growth factors as well, can activate the androgen receptor. © 1996 Wiley‐Liss, Inc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.