A simulation study is described of the behaviour of ions confined in a quadrupole ion trap during each of two separate operations of a tandem mass spectrometric experiment. The two operations are those of mass-selective ion isolation and mass-selective resonance excitation to the point of ion ejection from the ion trap. The method of mass-selective ion isolation simulated is that of consecutive ion isolation. Simulation data indicate that the collisional history of the ions prior to the isolation process can greatly influence the degree to which ions survive this process. Simulation data for mass-selective resonance ejection are compared with experimental data obtained with a Finnigan-MAT ion trap mass spectrometer. In each operation, the facility with which ions absorb energy from the field within the ion trap, whether this field is derived from the R.F. drive potential or a supplementary potential, can determine the extent to which ions are retained within the ion trap during the two mass-selective operations described.
The negative ion chemical ionization mass spectra of twentyeight C4 to C7 carbonyl compounds were recorded using the oxide radical anion O(-•) as reagent ion. As noted earlier, the reactions occurring include H(+) abstraction, H 2 (+•) abstraction, H- atom displacement, and alkyl radical displacement. In addition, the [M-2H](-) ions fragment further by alkyl radical elimination. The relative importance of these reactions depends strongly on molecular structure, with the result that isomer distinction frequently is possible. Where this is not possible, as for isomeric aldehydes, the collisional charge inversion mass spectra of common product ions provides isomer distinction. The H 2 (+•) abstraction reaction is shown to involve abstraction not only of two hydrogens from the same α-carbon but also, in part, abstraction of one hydrogen from each α-carbon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.