We simulate interactions between adsorbing and nonadsorbing surfaces immersed in solutions containing monodisperse semiflexible chains. Apart from the nature of the surfaces, we investigate responses to changes of the intrinsic chain stiffness, the degree of polymerization, and the bulk concentration. Our simulations display a sufficient accuracy and precision to reveal free-energy barriers that are small on a typical scale of surface force simulations, but still of the same order as the expected van der Waals interactions. Two different approaches have been tested: grand canonical simulations, improved by configurational-biased techniques, and a perturbation method utilizing the isotension ensemble. We find the former to be preferable when the surfaces are nonadsorbing, whereas the isotension approach is superior for calculations of interactions between adsorbing surfaces, especially if the polymers are stiff. We also compare our simulation results with predictions from several versions of polymer density functional theory. We find that a crucial aspect of these theories, in quantitative terms, is that they recognize that end monomers exclude more volume to the surrounding than inner ones do. Those theories provide satisfactorily accurate predictions, particularly when the surfaces are nonadsorbing.
The strength and range of surface forces in a system consisting of charged polymers with variable intramolecular stiffness confined between two charged planar surfaces have been investigated by Monte Carlo simulations. The negatively charged surfaces are neutralized by polymers carrying charges of opposite sign. Introducing the intermediate intrinsic stiffness of the chains gives rise to a weaker, but more long-ranged attraction between the surfaces. In the limit of infinitely stiff chains, this bridging attraction is lost, but it is replaced by a strong correlation attraction at short distances. Comparisons with predictions by a correlation-corrected polyelectrolyte Poisson-Boltzmann theory are made. The theory predicts surface attractions that are somewhat too weak, but all qualitative features are correctly reproduced. Given the crudeness of the model, the quantitative agreement is satisfactory.
With grand canonical simulations invoking a configurationally weighted scheme, we have calculated interactions between charged surfaces immersed in a polyelectrolyte solution. In contrast to previous simulations of such systems, we have imposed full equilibrium conditions (i.e., we have included diffusive equilibrium with a bulk solution). This has a profound impact on the resulting interactions: even at modest surface charge densities, oppositely charged chains will, at sufficiently large separations, adsorb strongly enough to overcompensate for the nominal surface charge. This phenomenon, known as charge inversion, generates a double-layer repulsion and a free-energy barrier. Simpler canonical approaches, where the chains are assumed to neutralize the surfaces perfectly, will not capture this stabilizing barrier. The barrier height increases with the length of the polyions. Interestingly enough, the separation at which the repulsion becomes attractive is independent of chain length. The short chains here are unable to reach across from one surface to the other. We therefore conclude that the transition to an attractive regime is not provided by the formation of such "intersurface" bridges. With long chains and at large separations, charge inversion displays decaying oscillatory behavior (i.e., the apparent surface charge switches sign once again). This is due to polyion packing effects. We have also investigated responses to salt addition and changes in polyelectrolyte concentration. Our results are in qualitative and semiquantitative agreement with experimental findings, although it should be noted that our chains are comparatively short, and the experimental surface charge density is poorly established.
Monte Carlo simulations within the primitive model of calcium-mediated adsorption of linear and comb polyelectrolytes onto like-charged surfaces are described, focusing on the effect of calcium and polyion concentrations as well as on the ion pairing between polymers and calcium ions. We use a combination of Monte Carlo simulations and experimental data from titration and calcium binding to quantify the ion pairing. The polymer adsorption is shown to occur as a result of surface overcharging by Ca(2+) and ion pairing between charged monomers and Ca(2+). In agreement with experimental observations, the simulations predict that the polymer adsorption isotherm goes through a maximum as the calcium or the polymer concentration is increased. The non-Langmuir isotherms are rationalized in terms of charge-charge correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.