One mechanism leading to neurodegeneration during Alzheimer's disease (AD) is amyloid beta peptide (Abeta) neurotoxicity. Abeta elicits in cultured central nervous system neurons a biphasic response: a low-dose neurotrophic response and a high-dose neurotoxic response. Previously we reported that NF-kappaB is activated by low doses of Abeta only. Here we show that NF-kappaB activation leads to neuroprotection. In primary neurons we found that a pretreatment with 0.1 microM Abeta-(1-40) protects against neuronal death induced with 10 microM Abeta-(1-40). As a known neuroprotective agent we next analyzed the effect of tumor necrosis factor alpha (TNF-alpha). Maximal activation of NF-kappaB was found with 2 ng/ml TNF-alpha. Pretreatment with TNF-alpha protected cerebellar granule cells from cell death induced by 10 microM Abeta-(1-40). This protection is described by an inverted U-shaped dose response and is maximal with a NF-kappaB-activating dose. The molecular specificity of this protective effect was analyzed by specific blockade of NF-kappaB activation. Overexpression of a transdominant negative IkappaB-alpha blocks NF-kappaB activation and potentiates Abeta-mediated neuronal apoptosis. Our findings show that activation of NF-kappaB is the underlying mechanism of the neuroprotective effect of low-dose Abeta and TNF-alpha. In accordance with these in vitro data we find that nuclear NF-kappaB immunoreactivity around various plaque stages of AD patients is reduced in comparison to age-matched controls. Taken together these data suggest that pharmacological NF-kappaB activation may be a useful approach in the treatment of AD and related neurodegenerative disorders.
Temporal lobe resections within the language dominant hemisphere can be accompanied by a decline in verbal memory performance, even if the HC is spared. Yet, HC sparing surgery is associated with a benefit in verbal learning performance. These results can help when counselling patients prior to epilepsy surgery.
To better understand pH-dependence of endogenous fluorescence of algae, we employed spectroscopy and microscopy methods, including advanced time-resolved fluorescence imaging microscopy (FLIM), using green algae Chlorella sp. as a model system. Absorption spectra confirmed two peaks, at 400–420 nm and 670 nm. Emission was maximal at 680 nm, with smaller peaks between 520 and 540 nm. Acidification led to a gradual decrease in the red fluorescence intensity with the maximum at 680 nm when excited by 450 nm laser. FLIM measurements, performed using 475 nm picoseconds excitation, uncovered that this effect is accompanied by a shortening of the tau1 fluorescence lifetime. Under severe acidification, we also noted an increase in the green fluorescence with a maximum between 520–540 nm and a shift toward 690–700 nm of the red fluorescence, accompanied by prolongation of the tau2 fluorescence lifetime. Gathered data increase our knowledge on the responsiveness of algae to acidification and indicate that endogenous fluorescence derived from chlorophylls can potentially serve as a biosensing tool for monitoring pH change in its natural environment.
Pollution by heavy metals represents a significant environmental burden. We employed confocal microscopy with spectral detection and fluorescence lifetime imaging (FLIM) to evaluate the effect of nanoparticles (NPs) from various metals (Zinc, Nickel, Cobalt, Copper) on endogenous fluorescence of Fontinalis antipyretica moss. Short term (3–5 day) exposure to NPs, designed and fabricated by direct synthesis using femtosecond laser ablation in water, was studied. The green flavonoid and/or lignin endogenous fluorescence peaking between 500 and 560 nm was found to be increased by Zn and significantly reduced by Cu. The overall red chlorophyll fluorescence intensity with a maximum of 680 nm remained largely unchanged after exposure to Ni and Zn, but was decreased in the presence of Co and completely abolished by Cu. All NPs but Zn induced changes in the fluorescence lifetimes, demonstrating increased sensitivity of this parameter to environmental pollution. Gathered data indicate fast responsiveness of the endogenous fluorescence in the Fontinalis antipyretica moss to the presence of heavy metals that can thus potentially serve as a biosensing tool for monitoring environmental pollution in the moss natural environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.