Regulatory regions of plant genes tend to be more compact than those of animal genes, but the complement of transcription factors encoded in plant genomes is as large or larger than that found in those of animals. Plants therefore provide an opportunity to study how transcriptional programs control multicellular development. We analyzed global gene expression during development of the reference plant Arabidopsis thaliana in samples covering many stages, from embryogenesis to senescence, and diverse organs. Here, we provide a first analysis of this data set, which is part of the AtGenExpress expression atlas. We observed that the expression levels of transcription factor genes and signal transduction components are similar to those of metabolic genes. Examining the expression patterns of large gene families, we found that they are often more similar than would be expected by chance, indicating that many gene families have been co-opted for specific developmental processes.
We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.
Microarray analysis has become a widely used tool for the generation of gene expression data on a genomic scale. Although many significant results have been derived from microarray studies, one limitation has been the lack of standards for presenting and exchanging such data. Here we present a proposal, the Minimum Information About a Microarray Experiment (MIAME), that describes the minimum information required to ensure that microarray data can be easily interpreted and that results derived from its analysis can be independently verified. The ultimate goal of this work is to establish a standard for recording and reporting microarray-based gene expression data, which will in turn facilitate the establishment of databases and public repositories and enable the development of data analysis tools. With respect to MIAME, we concentrate on defining the content and structure of the necessary information rather than the technical format for capturing it.
http://www.tree-puzzle.de. The program is written in ANSI C. TREE-PUZZLE can be run on UNIX, Windows and Mac systems, including Mac OS X. To run the parallel version of PUZZLE, a Message Passing Interface (MPI) library has to be installed on the system. Free MPI implementations are available on the Web (cf. http://www.lam-mpi.org/mpi/implementations/).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.