Updated cosmic-ray and radio constraints on light dark matter: Implications for the GeV gamma-ray excess at the Galactic Center Bringmann, T.; Vollmann, M.; Weniger, C. General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: http://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date: 24 Mar 2019Updated cosmic-ray and radio constraints on light dark matter: Implications for the GeV gamma-ray excess at the Galactic Center The apparent gamma-ray excess in the Galactic center region and inner Galaxy has attracted considerable interest, notably because both its spectrum and its radial distribution are consistent with an interpretation in terms of annihilating dark matter particles with a mass of about 10-40 GeV. We confront such an interpretation with an updated compilation of various indirect dark matter detection bounds, which we adapt to the specific form required by the observed signal. We find that cosmic-ray positron data strongly rule out dark matter annihilating to light leptons, or "democratically" to all leptons, as an explanation of the signal. Cosmic-ray antiprotons, for which we present independent and significantly improved limits with respect to previous estimates, are already in considerable tension with dark matter (DM) annihilation to any combination of quark final states; the first set of AMS-02 data will thus be able to rule out or confirm the DM hypothesis with high confidence. For reasonable assumptions about the magnetic field in the Galactic center region, radio observations independently put very severe constraints on a DM interpretation of the excess, in particular for all leptonic annihilation channels.
The annihilation cross section of weakly interacting TeV scale dark matter particles χ 0 into photons is affected by large quantum corrections due to electroweak Sudakov logarithms and the Sommerfeld effect. We extend our previous work on the resummation of the semi-inclusive photon energy spectrum in χ 0 χ 0 → γ + X in the vicinity of the maximal photon energy E γ = m χ with NLL' accuracy from the case of narrow photon energy resolution E γ res of order m 2 W /m χ to intermediate resolution of order E γ res ∼ m W . We also provide details on the previous narrow resolution calculation. The two calculations, performed in different effective field theory set-ups for the wino dark matter model, are then shown to match well, providing an accurate representation up to energy resolutions of about 300 GeV.
We revisit the possibility of a Dirac fermion dark matter candidate in the light of current b → s + − anomalies by investigating a minimal extension of the Standard Model with a horizontal U(1) local symmetry. Dark matter stability is protected by a remnant Z2 symmetry arising after spontaneous symmetry breaking of U(1) . The associated Z gauge boson can accommodate current hints of new physics in b → s + − decays, and acts as a vector portal between dark matter and the visible sector. We find that the model is severely constrained by a combination of precision measurements at flavour factories, LHC searches for dilepton resonances, as well as direct and indirect dark matter searches. Despite this, viable regions of the parameter space accommodating the observed dark matter relic abundance and the b → s + − anomalies still persist for dark matter and Z masses in the TeV range.
An analysis of the Fermi gamma-ray space telescope data has recently revealed a resolved gamma-ray feature close to the galactic center which is consistent with monochromatic photons at an energy of about 130 GeV. If interpreted in terms of dark matter (DM) annihilating into (Z, h), this would correspond to a DM particle mass of roughly 130 GeV (145 GeV, 155 GeV). The rate for these loop-suppressed processes, however, is larger than typically expected for thermally produced DM. Correspondingly, one would generically expect even larger tree-level production rates of standard model fermions or gauge bosons. Here, we quantify this expectation in a rather model-independent way by relating the tree level and loop amplitudes with the help of the optical theorem. As an application, we consider bounds from continuum gamma rays, radio, and antiproton data on the tree-level amplitudes and translate them into constraints on the loop amplitudes. We find that, independently of the DM production mechanism, any DM model aiming at explaining the line signal in terms of charged standard model particles running in the loop is in rather strong tension with at least one of these constraints, with the exception of loops dominated by top quarks. We stress that attempts to explain the 130 GeV feature with internal bremsstrahlung do not suffer from such difficulties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.