A series of catastrophic failures between alloy 625 weld metal (referred to as ‘A625’) and AISI 8630 low alloy steel forgings (referred to as ‘8630’) on cathodically-charged subsea equipment demonstrate the need to gain a better understanding of the hydrogen-induced tearing resistance of these interfaces as well as similar types of interfaces also currently used in the field. Other dissimilar metal weld interfaces in use include ASTM A182 F22 (referred to as ‘F22’) welded with A625. Similar metal alternatives are also in use, including F22 welded with low alloy steel (referred to as ‘LAS’). Slow strain rate single-edge notched bend tests under hydrogen charging conditions were used to establish ‘R-curve’ crack growth resistance trends for the F22-A625 and F22-LAS weld metal interfaces. Differences in ‘R-curve’ crack growth behavior between the different weld metal interfaces have been observed and compared to R-curve results from 8630-A625 interfaces. The F22-LAS interface demonstrates the most tearing resistance under slow strain rate after hydrogen charging followed by the F22-A625 and then the 8630-A625 interface. Subtle differences between the weld metal microstructures are described and provide a possible explanation regarding the difference in ‘R-curve’ behavior.
Weld procedure qualification methodologies for ExxonMobil high strain pipelines are presented. ExxonMobil has been involved in the design and construction of high strain pipelines for both onshore and offshore applications. These projects have included onshore applications involving potential seismic activity (fault displacement and soil liquefaction) as well as arctic applications that may involve displacements associated with frost heave and thaw settlement. Recent offshore installations have been designed and constructed to accommodate potential displacement caused by ice scour. Some of these installations have been designed to accommodate in excess of 3% longitudinal tensile strain demand. A critical element of the overall pipeline design is the qualification and validation of acceptable strain capacity for the pipeline girth welds. A girth weld qualification test program, based on large scale proof testing (i.e., curved wide plates) has been developed and executed.
Pipeline applications that are subject to global plastic strains require specific testing and qualification programs intended to verify the strain capacity of the girth welds. Such strain demands are generally beyond the limits of standard ECA applicability which normally cover demands up to 0.5% strain. Therefore, qualification of welding procedures for high strain environments require significantly more testing than weld procedures intended for stress-based designs. The plastic strain capacity of girth welds is a function of the pipe and weld metal properties, as well as the maximum flaw size allowable in the girth weld. Specific weld metal/heat affected zone properties, based on small scale testing, should be combined with full scale curved wide plate testing of girth welds that include artificial flaws.
The intelligent design of a given pipeline system intended for operation beyond the elastic limit should incorporate specific features into both the base material (line pipe) and girth weld that enable the affected system to deform safely into the plastic regime within the intended strain demand limits. The current paper focuses on the mechanical properties known to influence the strain capacity of the base material (i.e., line pipe steel independent of the girth weld). Line pipe mechanical properties of interest include: longitudinal yield strength, tensile strength, yield to tensile strength ratio, reduction of area, elongation and uniform elongation. Of particular interest (in consideration of the conventional thermally applied corrosion protection coating systems to be employed), are the longitudinal mechanical properties in the “aged” condition. The present study investigates six (6) different pipeline steels encompassing grades X60 (415 MPa) to X100 (690 MPa), and includes both UOE Submerged Arc Welded - Longitudinal (SAW-L) and seamless (SMLS) forming methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.