Centrally located diffuse radio emission has been observed in both merging and non-merging galaxy clusters. Depending on their morphology and size, we distinguish between giant radio haloes, which occur predominantly in merging clusters, and mini haloes, which are found in non-merging, cool-core clusters. In recent years, cluster-scale radio emission has also been observed in clusters with no sign of major mergers, showing that our knowledge of the mechanisms that lead to particle acceleration in the intra-cluster medium (ICM) is still incomplete. Low-frequency sensitive observations are required to assess whether the emission discovered in these few cases is common in galaxy clusters or not. With this aim, we carried out a campaign of observations with the LOw Frequency ARay (LOFAR) in the frequency range 120 -168 MHz of nine massive clusters selected from the Planck SZ catalogue, which had no sign of major mergers. In this paper, we discuss the results of the observations that have led to the largest cluster sample studied within the LOFAR Two-metre Sky Survey, and we present Chandra X-ray data used to investigate the dynamical state of the clusters, verifying that the clusters are currently not undergoing major mergers, and to search for traces of minor or off-axis mergers. We discover large-scale steep-spectrum emission around mini haloes in the cool-core clusters PSZ1G139.61+24 and RXJ1720.1+2638, which is not observed around the mini halo in the non-cool-core cluster A1413. We also discover a new 570 kpc-halo in the noncool-core cluster RXCJ0142.0+2131. We derived new upper limits to the radio power for clusters in which no diffuse radio emission was found, and we discuss the implication of our results to constrain the cosmic-ray energy budget in the ICM. We conclude that radio emission in non-merging massive clusters is not common at the sensitivity level reached by our observations and that no clear connection with the cluster dynamical state is observed. Our results might indicate that the sloshing of a dense cool core could trigger particle acceleration on larger scales and generate steep-spectrum radio emission.
Giant radio halos are Mpc-size sources found in some merging galaxy clusters. The synchrotron emitting electrons are thought to be (re)accelerated by plasma turbulence induced by the merging of two massive clusters. Cool core galaxy clusters have a low temperature core, likely an indication that a major merger has not recently occurred. CL1821+643 is one of the strongest cool core clusters known so far. Surprisingly, we detect a giant radio halo with a largest linear size of ∼ 1.1 Mpc. We discuss the radio and X-ray properties of the cluster in the framework of the proposed models for giant radio halos. If a merger is causing the radio emission, despite the presence of a cool-core, we suggest that it should be off-axis, or in an early phase, or a minor one.
Radio relics in galaxy clusters are believed to be associated with powerful shock fronts that originate during cluster mergers, and are a testbed for the acceleration of relativistic particles in the intracluster medium. Recently, radio relic observations have pushed into the cm-wavelength domain (1-30 GHz) where a break from the standard synchrotron power law spectrum has been found, most noticeably in the famous "Sausage" relic. Such spectral steepening is seen as an evidence for non-standard relic models, such as ones requiring seed electron population with a break in their energy spectrum. In this paper, however, we point to an important effect that has been ignored or considered insignificant while interpreting these new high-frequency radio data, namely the contamination due to the Sunyaev-Zel'dovich (SZ) effect that changes the observed synchrotron flux. Even though the radio relics reside in the cluster outskirts, the shock-driven pressure boost increases the SZ signal locally by roughly an order of magnitude. The resulting flux contamination for some well-known relics are non-negligible already at 10 GHz, and at 30 GHz the observed synchrotron fluxes can be diminished by a factor of several from their true values. At higher redshift the contamination gets stronger due to the redshift independence of the SZ effect. Interferometric observations are not immune to this contamination, since the change in the SZ signal occurs roughly at the same length scale as the synchrotron emission, although there the flux loss is less severe than single-dish observations. Besides presenting this warning to observers, we suggest that the negative contribution from the SZ effect can be regarded as one of the best evidence for the physical association between radio relics and shock waves. We present a simple analytical approximation for the synchrotron-to-SZ flux ratio, based on a theoretical radio relic model that connects the nonthermal emission to the thermal gas properties, and show that by measuring this ratio one can potentially estimate the relic magnetic fields or the particle acceleration efficiency.
We present ALMA measurements of a merger shock using the thermal Sunyaev-Zel'dovich (SZ) effect signal, at the location of a radio relic in the famous El Gordo galaxy cluster at z ≈ 0.9. Multi-wavelength analysis in combination with the archival Chandra data and a high-resolution radio image provides a consistent picture of the thermal and non-thermal signal variation across the shock front and helps to put robust constraints on the shock Mach number as well as the relic magnetic field. We employ a Bayesian analysis technique for modeling the SZ and X-ray data self-consistently, illustrating respective parameter degeneracies. Combined results indicate a shock with Mach number M = 2.4 +1.3 −0.6 , which in turn suggests a high value of the magnetic field (of the order of 4 − 10 µG) to account for the observed relic width at 2 GHz. At roughly half the current age of the universe, this is the highest-redshift direct detection of a cluster shock to date, and one of the first instances of ALMA-SZ observation in a galaxy cluster. It shows the tremendous potential for future ALMA-SZ observations to detect merger shocks and other cluster substructures out to the highest redshifts.
We aim at an unbiased census of the radio halo population in galaxy clusters and test whether current low number counts of radio halos have arisen from selection biases. We construct near-complete samples based on X-ray and Sunyaev-Zel'dovich (SZ) effect cluster catalogs and search for diffuse, extended (Mpc-scale) emission near the cluster centers by analyzing data from the NRAO Very Large Array Sky Survey. We remove compact sources using a matched filtering algorithm and model the diffuse emission using two independent methods. The relation between radio halo power at 1.4 GHz and mass observables is modeled using a power law, allowing for a 'drop-out' population of clusters hosting no radio halo emission. An extensive suite of simulations is used to check for biases in our methods. Our findings suggest that the fraction of targets hosting radio halos may have to be revised upward for clusters selected using the Sunyaev-Zel'dovich effect: while approximately 60% of the X-ray selected targets are found to contain no extended radio emission, in agreement with previous findings, the corresponding fraction in the SZ selected samples is roughly 20%. We propose a simple explanation for this selection difference based on the distinct time evolution of the SZ and X-ray observables during cluster mergers, and a bias towards relaxed, cool-core clusters in the X-ray selection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.