Millions of open-source projects with numerous bug fixes are available in code repositories. This proliferation of software development histories can be leveraged to learn how to fix common programming bugs. To explore such a potential, we perform an empirical study to assess the feasibility of using Neural Machine Translation techniques for learning bug-fixing patches for real defects. First, we mine millions of bug-fixes from the change histories of projects hosted on GitHub, in order to extract meaningful examples of such bug-fixes. Next, we abstract the buggy and corresponding fixed code, and use them to train an Encoder-Decoder model able to translate buggy code into its fixed version. In our empirical investigation we found that such a model is able to fix thousands of unique buggy methods in the wild. Overall, this model is capable of predicting fixed patches generated by developers in 9-50% of the cases, depending on the number of candidate patches we allow it to generate. Also, the model is able to emulate a variety of different Abstract Syntax Tree operations and generate candidate patches in a split second.
Deep learning subsumes algorithms that automatically learn compositional representations. The ability of these models to generalize well has ushered in tremendous advances in many fields such as natural language processing (NLP). Recent research in the software engineering (SE) community has demonstrated the usefulness of applying NLP techniques to software corpora. Hence, we motivate deep learning for software language modeling, highlighting fundamental differences between state-of-the-practice software language models and connectionist models. Our deep learning models are applicable to source code files (since they only require lexically analyzed source code written in any programming language) and other types of artifacts. We show how a particular deep learning model can remember its state to effectively model sequential data, e.g., streaming software tokens, and the state is shown to be much more expressive than discrete tokens in a prefix. Then we instantiate deep learning models and show that deep learning induces high-quality models compared to n-grams and cachebased n-grams on a corpus of Java projects. We experiment with two of the models' hyperparameters, which govern their capacity and the amount of context they use to inform predictions, before building several committees of software language models to aid generalization. Then we apply the deep learning models to code suggestion and demonstrate their effectiveness at a real SE task compared to state-of-the-practice models. Finally, we propose avenues for future work, where deep learning can be brought to bear to support model-based testing, improve software lexicons, and conceptualize software artifacts. Thus, our work serves as the first step toward deep learning software repositories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.