[1] Precipitation downscaling improves the coarse resolution and poor representation of precipitation in global climate models and helps end users to assess the likely hydrological impacts of climate change. This paper integrates perspectives from meteorologists, climatologists, statisticians, and hydrologists to identify generic end user (in particular, impact modeler) needs and to discuss downscaling capabilities and gaps. End users need a reliable representation of precipitation intensities and temporal and spatial variability, as well as physical consistency, independent of region and season. In addition to presenting dynamical downscaling, we review perfect prognosis statistical downscaling, model output statistics, and weather generators, focusing on recent developments to improve the representation of spacetime variability. Furthermore, evaluation techniques to assess downscaling skill are presented. Downscaling adds considerable value to projections from global climate models. Remaining gaps are uncertainties arising from sparse data; representation of extreme summer precipitation, subdaily precipitation, and full precipitation fields on fine scales; capturing changes in small-scale processes and their feedback on large scales; and errors inherited from the driving global climate model.
The authors systematically investigate two easily computed measures of the effective number of spatial degrees of freedom (ESDOF), or number of independently varying spatial patterns, of a time-varying field of data. The first measure is based on matching the mean and variance of the time series of the spatially integrated squared anomaly of the field to a chi-squared distribution. The second measure, which is equivalent to the first for a long time sample of normally distributed field values, is based on the partitioning of variance between the EOFs. Although these measures were proposed almost 30 years ago, this paper aims to provide a comprehensive discussion of them that may help promote their more widespread use. The authors summarize the theoretical basis of the two measures and considerations when estimating them with a limited time sample or from nonnormally distributed data. It is shown that standard statistical significance tests for the difference or correlation between two realizations of a field (e.g., a forecast and an observation) are approximately valid if the number of degrees of freedom is chosen using an appropriate combination of the two ESDOF measures. Also described is a method involving ESDOF for deciding whether two time-varying fields are significantly correlated to each other. A discussion of the parallels between ESDOF and the effective sample size of an autocorrelated time series is given, and the authors review how an appropriate measure of effective sample size can be computed for assessing the significance of correlations between two time series.
Biases in climate model simulations introduce biases in subsequent impact simulations. Therefore, bias correction methods are operationally used to post-process regional climate projections. However, many problems have been identified, and some researchers question the very basis of the approach. Here we demonstrate that a typical cross-validation is unable to identify improper use of bias correction. Several examples show the limited ability of bias correction to correct and to downscale variability, and demonstrate that bias correction can cause implausible climate change signals. Bias correction cannot overcome major model errors, and naive application might result in ill-informed adaptation decisions. We conclude with a list of recommendations and suggestions for future research to reduce, post-process, and cope with climate model biases
In low-lying coastal areas, the co-occurrence of high sea level and precipitation resulting in large runoff may cause compound flooding (CF). When the two hazards interact, the resulting impact can be worse than when they occur individually. Both storm surges and heavy precipitation, as well as their interplay, are likely to change in response to global warming. Despite the CF relevance, a comprehensive hazard assessment beyond individual locations is missing, and no studies have examined CF in the future. Analyzing co-occurring high sea level and heavy precipitation in Europe, we show that the Mediterranean coasts are experiencing the highest CF probability in the present. However, future climate projections show emerging high CF probability along parts of the northern European coast. In several European regions, CF should be considered as a potential hazard aggravating the risk caused by mean sea level rise in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.