SUMMARYThe circadian system allows plants to coordinate metabolic and physiological functions with predictable environmental variables such as dusk and dawn. This endogenous oscillator is comprised of biochemical and transcriptional rhythms that are synchronized with a plant's surroundings via environmental signals, including light and temperature. We have used chlorophyll fluorescence techniques to describe circadian rhythms of PSII operating efficiency (F
AbstractThe development of economical LED technology has enabled the application of different light qualities and quantities to control plant growth. Although we have a comprehensive understanding of plants’ perception of red and blue light, the lack of a dedicated green light sensor has frustrated our utilisation of intermediate wavelengths, with many contradictory reports in the literature. We discuss the contribution of red and blue photoreceptors to green light perception and highlight how green light can be used to improve crop quality. Importantly, our meta-analysis demonstrates that green light perception should instead be considered as a combination of distinct ‘green-’ and ‘yellow-’light induced responses. This distinction will enable clearer interpretation of plants’ behaviour in response to green light as we seek to optimise plant growth and nutritional quality in horticultural contexts.
Plants are acutely sensitive of their light environment, adapting their growth habit and prioritizing developmental decisions to maximize fecundity. In addition to providing an energy source and directional information, light quality also contributes to entrainment of the circadian system, an endogenous timing mechanism that integrates endogenous and environmental signalling cues to promote growth. Whereas plants' perception of red and blue portions of the spectrum are well defined, green light sensitivity remains enigmatic. In this study, we show that low fluence rates of green light are sufficient to entrain and maintain circadian rhythms in Arabidopsis and that cryptochromes contribute to this response. Importantly, green light responses are distinguishable from low blue light‐induced phenotypes. These data suggest a distinct signalling mechanism enables entrainment of the circadian system in green light‐enriched environments, such as those found in undergrowth and in densely planted monoculture.
The circadian system induces rhythmic variation in a suite of biochemical and physiological processes that serve to optimise plant growth in diel cycles. To be of greatest utility, these rhythmic behaviors are coordinated with regular environmental changes such as the rising and setting of the sun. Photoreceptors, along with metabolites produced during photosynthesis, act to synchronise the internal timing mechanism with lighting cues. We have recently shown that phototropins help maintain robust rhythms of photosynthetic operating efficiency (wPSII or F q 0 /F m 0 ) under blue light, although rhythmic accumulation of morning-phased circadian transcripts in the nucleus was unaffected. Here we report that eveningphased nuclear clock transcripts were also unaffected. We also observe that rhythms of nuclear clock transcript accumulation are maintained in phototropin mutant plants under a fluctuating lighting regime that induced a loss of F q 0 /F m 0 rhythms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.