Energy efficiency optimization techniques for steady state operation of induction machines are the state-of-the-art, and many methods have already been developed. However, many real-world industrial and electric vehicle applications cannot be considered to be in steady state operation. The focus of this contribution is on the efficiency optimization of induction machines in dynamic operation. Online dynamic operation is challenging due to the computational complexity and the required low sample times in an inverter. An offline optimization is therefore conducted to gain knowledge. Based on this offline optimal solution, a simple and easy to implement template based solution is developed. This approach aims at replicating the solution found by the offline optimization by resembling the shape and anticipative characteristics of the optimal flux trajectory. The energy efficiency improvement of the template based solution is verified by simulations and measurements on a test bench and using a real-world drive cycle scenario. For comparison, a model predictive numerical online optimization is investigated too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.