Fibroblast growth factor-23 (FGF-23) is a novel circulating peptide that regulates phosphorus (Pi) and vitamin D metabolism, but the mechanisms by which circulating FGF-23 itself is regulated are unknown. To determine whether the serum FGF-23 concentration is regulated by dietary intake of Pi, we fed wild-type (WT), Npt2a gene-ablated (Npt2a(-/-)), and Hyp mice diets containing varying Pi contents (0.02-1.65%). In WT mice, increases in dietary Pi intake from 0.02-1.65% induced a 7-fold increase in serum FGF-23 and a 3-fold increase in serum Pi concentrations. Across the range of dietary Pi, serum FGF-23 concentrations varied directly with serum Pi concentrations (r(2) = 0.72; P < 0.001). In Npt2a(-/-) mice, serum FGF-23 concentrations were significantly lower than in WT mice, and these differences could be accounted for by the lower serum Pi levels in Npt2a(-/-) mice. The serum concentrations of FGF-23 in Hyp mice were 5- to 25-fold higher than values in WT mice, and the values varied with dietary Pi intake. Fgf-23 mRNA abundance in calvaria was significantly higher in Hyp mice than in WT mice on the 1% Pi diet; in both groups of mice, fgf-23 mRNA abundance in calvarial bone was suppressed by 85% on the low (0.02%) Pi diet. In WT mice fed the low (0.02%) Pi diet, renal mitochondrial 1alpha-hydroxylase activity and renal 1alpha-hydroxylase (P450c1alpha) mRNA abundance were significantly higher than in mice fed the higher Pi diets and varied inversely with serum FGF-23 concentrations (r(2) = 0.86 and r(2) = 0.64; P < 0.001, respectively). The present data demonstrate that dietary Pi regulates the serum FGF-23 concentration in mice, and such regulation is independent of phex function. The data suggest that genotype-dependent and dietary Pi-induced changes in the serum FGF-23 concentration reflect changes in fgf-23 gene expression in bone.
August 15, 2007; doi:10.1152/ajprenal.00463.2006) is critical to the pathogenesis of a distinct group of renal phosphate wasting disorders: tumor-induced osteomalacia, X-linked hypophosphatemia, and autosomal dominant and autosomal recessive hypophosphatemic rickets. Excess circulating FGF-23 is responsible for their major phenotypic features which include hypophosphatemia due to renal phosphate wasting and inappropriately low serum 1,25(OH) 2D concentrations. To characterize the effects of FGF-23 on renal sodium-phosphate (Na/P i) cotransport and vitamin D metabolism, we administered FGF-23(R176Q) to normal mice. A single injection (0.33 g/g body wt) induced significant hypophosphatemia, 20 and 29% decreases (P Ͻ 0.001) in brush-border membrane (BBM) Na/P i cotransport at 5 and 17 h after injection, respectively, and comparable decreases in the abundance of type IIa Na/P i cotransporter protein in BBM. Multiple injections (6, 12, and 24 g/day for 4 days) induced dose-dependent decreases (38, 63, and 75%, respectively) in renal abundance of 1␣-hydroxylase mRNA (P Ͻ 0.05). To determine whether FGF-23(R176Q) exerts a direct action on 1␣-hydroxylase gene expression, we examined its effects in cultured human (HKC-8) and mouse (MCT) renal proximal tubule cells. FGF-23(R176Q) (1 to 10 ng/ml) induced a dose-dependent decrease in 1␣-hydroxylase mRNA with a maximum suppression of 37% (P Ͻ 0.05). Suppression was detectable after 6 h of exposure and maximal after 21 h. In MCT cells, FGF-23(R176Q) suppressed 1␣-hydroxylase mRNA and activated the ERK1/2 signaling pathway. The MAPK inhibitor PD98059 effectively abolished FGF-23-induced suppression of 1␣-hydroxylase mRNA by blocking signal transduction via ERK1/2. These novel findings provide evidence that FGF-23 directly regulates renal 1␣-hydroxylase gene expression via activation of the ERK1/2 signaling pathway. bone and mineral homeostasis; hypophosphatemic syndromes FIBROBLAST GROWTH FACTOR-23 (FGF-23), a bone-derived circulating peptide, is an important regulator of phosphorus and 1,25-dihydroxyvitamin D [1,25(OH) 2 D] metabolism and is required for maintenance of normal bone and mineral homeostasis. An excess of FGF-23 has been linked to the pathogenesis of tumor-induced osteomalacia, X-linked hypophosphatemia, and autosomal dominant and autosomal recessive hypophosphatemic rickets (4,12,21,29,33). These hypophosphatemic syndromes share common clinical and laboratory features which include rickets and osteomalacia, hypophosphatemia due to renal phosphate (P i ) wasting, inappropriately low serum 1,25(OH) 2 D concentrations, and greatly increased serum FGF-23 concentrations. That excess circulating FGF-23 contributes to the pathogenesis of these disorders is supported by observations that administration of recombinant FGF-23 or its overexpression in animals induces hypophosphatemia and inhibition of sodium (Na)-dependent P i (Na/P i ) cotransport in renal brush-border membrane (BBM) vesicles (1,19,29). FGF-23 suppresses the renal production of 1,25(OH) 2 D by suppressin...
The secosteroid hormone, 1,25-dihydroxyvitamin D [1,25(OH)2D], plays a crucial role in normal bone growth, calcium metabolism, and tissue differentiation. The key step in the biosynthesis of 1,25(OH)2D is its 1 alpha-hydroxylation from 25-hydroxyvitamin D (25-OHD) in the kidney. Because its expression in the kidney is very low, we cloned and sequenced cDNA for 25-OHD-1 alpha-hydroxylase (P450c1 alpha) from human keratinocytes, in which 1 alpha-hydroxylase activity and mRNA expression can be induced to be much greater. P450c1 alpha mRNA was expressed at much lower levels in human kidney, brain, and testis. Mammalian cells transfected with the cloned P450c1 alpha cDNA exhibit robust 1 alpha-hydroxylase activity. The identity of the 1,25(OH)2D3 product synthesized in transfected cells was confirmed by HPLC and gas chromatography-mass spectrometry. The gene encoding P450c1 alpha was localized to chromosome 12, where the 1 alpha-hydroxylase deficiency syndrome, vitamin D-dependent rickets type 1 (VDDR-1), has been localized. Primary cultures of human adult and neonatal keratinocytes exhibit abundant 1 alpha-hydroxylase activity, whereas those from a patient with VDDR-1 lacked detectable activity. Keratinocyte P450c1 alpha cDNA from the patient with VDDR-1 contained deletion/frameshift mutations either at codon 211 or at codon 231, indicating that the patient was a compound heterozygote for two null mutations. These findings establish the molecular genetic basis of VDDR-1, establish a novel means for its study in keratinocytes, and provide the sequence of the key enzyme in the biological activation of vitamin D.
In X-linked hypophosphatemia (XLH) and in its murine homologue, the Hyp mouse, increased circulating concentrations of fibroblast growth factor 23 (FGF-23) are critical to the pathogenesis of disordered metabolism of phosphate (Pi) and 1,25-dihydroxyvitamin D [1,25(OH)2D]. In this study, we hypothesized that in Hyp mice, FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of mitogen-activated protein kinase (MAPK) signaling. Wild-type and Hyp mice were administered either vehicle or the MEK inhibitor PD0325901 (12.5 mg/kg) orally daily for 4 days. At baseline, the renal abundance of early growth response 1 (egr1) mRNA was approximately 2-fold greater in Hyp mice than in wild-type mice. Treatment with PD0325901 greatly suppressed egr1 mRNA abundance in both wild-type and Hyp mice. In Hyp mice, PD0325901 induced an 8-fold increase in renal 1α-hydroxylase mRNA expression and a 4-fold increase in serum 1,25(OH)2D concentrations compared with vehicle-treated Hyp mice. Serum Pi levels in Hyp mice increased significantly after treatment with PD0325901, and the increase was associated with increased renal Npt2a mRNA abundance and brush-border membrane Npt2a protein expression. These findings provide evidence that in Hyp mice, MAPK signaling is constitutively activated in the kidney and support the hypothesis that the FGF-23-mediated suppression of renal 1,25(OH)2D production and Pi reabsorption depends on activation of MAPK signaling via MEK/ERK1/2. These findings demonstrate the physiologic importance of MAPK signaling in the actions of FGF-23 in regulating renal 1,25(OH)2D and Pi metabolism.
The mitochondrial enzyme 25-hydroxyvitamin D 1α-hydroxylase, which is encoded by the CYP27B1 gene, converts 25OHD to the biological active form of vitamin D, 1,25-dihydroxyvitamin D (1,25(OH)2D). Renal 1α-hydroxylase activity is the principal determinant of the circulating 1,25(OH)2D concentration and enzyme activity is tightly regulated by several factors. Fibroblast growth factor-23 (FGF-23) decreases serum 1,25(OH)2D concentrations by suppressing CYP27B1 mRNA abundance in mice. In extra-renal tissues, 1α-hydroxylase is responsible for local 1,25(OH)2D synthesis, which has important paracrine actions, but whether FGF-23 regulates CYP27B1 gene expression in extra-renal tissues is unknown. We sought to determine whether FGF-23 regulates CYP27B1 transcription in the kidney and whether extra-renal tissues are target sites for FGF-23-induced suppression of CYP27B1. In HEK293 cells transfected with the human CYP27B1 promoter, FGF-23 suppressed promoter activity by 70%, and the suppressive effect was blocked by CI-1040, a specific inhibitor of extracellular signal regulated kinase 1/2. To examine CYP27B1 transcriptional activity in vivo, we crossed fgf-23 null mice with mice bearing the CYP27B1 promoter-driven luciferase transgene (1α-Luc). In the kidney of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity was increased by 3-fold compared to that in wild-type/1α-Luc mice. Intraperitoneal injection of FGF-23 suppressed renal CYP27B1 promoter activity and protein expression by 26% and 60% respectively, and the suppressive effect was blocked by PD0325901, an ERK1/2 inhibitor. These findings provide evidence that FGF-23 suppresses CYP27B1 transcription in the kidney. Furthermore, we demonstrate that in FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA abundance are increased in several extra-renal sites. In the heart of FGF-23 null/1α-Luc mice, CYP27B1 promoter activity and mRNA were 2- and 5-fold higher, respectively, than in control mice. We also observed a 3- to 10-fold increase in CYP27B1 mRNA abundance in the lung, spleen, aorta and testis of FGF-23 null/1α-Luc mice. Thus, we have identified novel extra-renal target sites for FGF-23-mediated regulation of CYP27B1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.