The rich internal structure and long-range dipole-dipole interactions establish polar molecules as unique instruments for quantumcontrolled applications and fundamental investigations. Their potential fully unfolds at ultracold temperatures, where a plethora of effects is predicted in many-body physics [1,2], quantum information science [3,4], ultracold chemistry [5,6], and physics beyond the standard model [7,8]. These objectives have inspired the development of a wide range of methods to produce cold molecular ensembles [9][10][11][12][13][14]. However, cooling polyatomic molecules to ultracold temperatures has until now seemed intractable. Here we report on the experimental realization of opto-electrical cooling [15], a paradigm-changing cooling and accumulation method for polar molecules. Its key attribute is the removal of a large fraction of a molecule's kinetic energy in each step of the cooling cycle via a Sisyphus effect, allowing cooling with only few dissipative decay processes. We demonstrate its potential by reducing the temperature of about 10 6 trapped CH 3 F molecules by a factor of 13.5, with the phase-space density increased by a factor of 29 or a factor of 70 discounting trap losses. In contrast to other cooling mechanisms, our scheme proceeds in a trap, cools in all three dimensions, and works for a large variety of polar molecules. With no fundamental temperature limit anticipated down to the photon-recoil temperature in the nanokelvin range, our method eliminates the primary hurdle in producing ultracold polyatomic molecules. The low temperatures, large molecule numbers and long trapping times up to 27 s will allow an interaction-dominated regime to be attained, enabling collision studies and investigation of evaporative cooling toward a BEC of polyatomic molecules.The ability to prepare ultracold molecular ensembles has an application potential akin to that of ultracold atoms some decades ago. In fact, the association of KRb dimers [16] as well as the laser cooling of SrF [17] has brought fascinating physics within reach. However, both approaches are restricted to a highly specialized set of purely diatomic molecule species. In order to investigate fundamental physics based on relativistic effects near heavy nuclei or parity violation effects in chiral molecules, or to study molecules of astrophysical, biological, or chemical interest, a more general approach to preparing ultracold molecular ensemble is imperative. This holds in particular for the rich chemical variety of carbon-, nitrogen-, or oxygen-based molecules for which the constituent atoms have not even been laser cooled. Devising a dissipative process to cool such molecules into the ultracold regime has been an exceedingly challenging problem. The standard approach for atoms, laser cooling, is in general impossible for molecules due to the lack of suitable cycling transitions. Creating an artificial cycling transition via cavity cooling [18] has not been demonstrated despite substantial experimental [19] and theoretical [20][21][...
We demonstrate direct cooling of gaseous formaldehyde (H2CO) to the microkelvin regime. Our approach, optoelectrical Sisyphus cooling, provides a simple dissipative cooling method applicable to electrically trapped dipolar molecules. By reducing the temperature by 3 orders of magnitude and increasing the phase-space density by a factor of ∼10(4), we generate an ensemble of 3×10(5) molecules with a temperature of about 420 μK, populating a single rotational state with more than 80% purity.
We present a versatile electric trap for the exploration of a wide range of quantum phenomena in the interaction between polar molecules. The trap combines tunable fields, homogeneous over most of the trap volume, with steep gradient fields at the trap boundary. An initial sample of up to 10(8), CH(3)F molecules is trapped for as long as 60 s, with a 1/e storage time of 12 s. Adiabatic cooling down to 120 mK is achieved by slowly expanding the trap volume. The trap combines all ingredients for opto-electrical cooling, which, together with the extraordinarily long storage times, brings field-controlled quantum-mechanical collision and reaction experiments within reach.
Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200 m s(-1) to obtain beams with velocities below 15 m s(-1) and intensities of several 10(9) mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.
Ultracold molecules represent a fascinating research frontier in physics and chemistry, but it has proven challenging to prepare dense samples at low velocities. Here, we present a solution to this goal by means of a nonconventional approach dubbed cryofuge. It uses centrifugal force to bring cryogenically cooled molecules to kinetic energies below 1 K × in the laboratory frame, where is the Boltzmann constant, with corresponding fluxes exceeding 10 per second at velocities below 20 meters per second. By attaining densities higher than 10 per cubic centimeter and interaction times longer than 25 milliseconds in samples of fluoromethane as well as deuterated ammonia, we observed cold dipolar collisions between molecules and determined their collision cross sections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.