Abstract. We consider excited random walks on Z with a bounded number of i.i.d. cookies per site which may induce drifts both to the left and to the right. We extend the criteria for recurrence and transience by M. Zerner and for positivity of speed by A.-L. Basdevant and A. Singh to this case and also prove an annealed central limit theorem. The proofs are based on results from the literature concerning branching processes with migration and make use of a certain renewal structure.
Abstract. We introduce a class of nearest-neighbor integer random walks in random and non-random media, which includes excited random walks considered in the literature. At each site the random walker has a drift to the right, the strength of which depends on the environment at that site and on how often the walker has visited that site before. We give exact criteria for recurrence and transience and consider the speed of the walk.
Abstract. We develop a theory for self-similar sets in R s that fulfil the weak separation property of Lau and Ngai, which is weaker than the open set condition of Hutchinson.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.