The corticotropin-releasing factor (CRF) 3 receptor family is involved in the regulation of the hypothalamic-pituitary-adrenal stress axis in mammals (1-3). A large body of evidence points to a major role of the receptors in mediating CRF effects in anxiety and depressive disorders and in stress-associated pathologies. Two types of CRF receptors are known, the CRF 1 and the CRF 2 receptors. The CRF 1 receptor is expressed mainly in the pituitary and central nervous system and binds CRF with high affinity. It mediates adrenocorticotrophic hormone release from the anterior pituitary and is involved in the endocrine, autonomic, and cognitive responses to stress stimuli. The CRF 2 receptors are expressed in the central nervous system but also in the periphery including skeletal muscle cells, cardiac myocytes, and cells of the gastrointestinal tract. Three splice variants of CRF 2 receptors have been described: CRF 2(a) , CRF 2(b) , and CRF 2(c) receptors. They bind CRF with low and the urocortins 1-3 with high affinity. The CRF 2 receptors are involved in the regulation of feeding behavior (4) and in recovery from a stress response (5). It is likely that they are also involved in modulating anxiety-related behavior.The CRF receptors belong to the small subgroup of GPCRs (5-10%) possessing putative N-terminal signal peptides. These peptides are believed to be cleaved-off after mediating the ER targeting/insertion process (6, 7). The majority (90 -
Approximately 5-10% of the GPCRs (G-protein-coupled receptors) contain N-terminal signal peptides that are cleaved off during receptor insertion into the ER (endoplasmic reticulum) membrane by the signal peptidases of the ER. The reason as to why only a subset of GPCRs requires these additional signal peptides is not known. We have recently shown that the signal peptide of the human ET(B)-R (endothelin B receptor) does not influence receptor expression but is necessary for the translocation of the receptor's N-tail across the ER membrane and thus for the establishment of a functional receptor [Köchl, Alken, Rutz, Krause, Oksche, Rosenthal and Schülein (2002) J. Biol. Chem. 277, 16131-16138]. In the present study, we show that the signal peptide of the rat CRF-R1 (corticotropin-releasing factor receptor 1) has a different function: a mutant of the CRF-R1 lacking the signal peptide was functional and displayed wild-type properties with respect to ligand binding and activation of adenylate cyclase. However, immunoblot analysis and confocal laser scanning microscopy revealed that the mutant receptor was expressed at 10-fold lower levels than the wild-type receptor. Northern-blot and in vitro transcription translation analyses precluded the possibility that the reduced receptor expression is due to decreased transcription or translation levels. Thus the signal peptide of the CRF-R1 promotes an early step of receptor biogenesis, such as targeting of the nascent chain to the ER membrane and/or the gating of the protein-conducting translocon of the ER membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.