We have previously described the efficient guidance and unidirectional sliding of actin filaments along nanosized tracks with adsorbed heavy meromyosin (HMM; myosin II motor fragment). In those experiments, the tracks were functionalized with trimethylchlorosilane (TMCS) by chemical vapor deposition (CVD) and surrounded by hydrophilic areas. Here we first show, using in vitro motility assays on nonpatterned and micropatterned surfaces, that the quality of HMM function on CVD-TMCS is equivalent to that on standard nitrocellulose substrates. We further examine the influences of physical properties of different surfaces (glass, SiO(2), and TMCS) and chemical properties of the buffer solution on motility. With the presence of methylcellulose in the assay solution, there was HMM-induced actin filament sliding on both glass/SiO(2) and on TMCS, but the velocity was higher on TMCS. This difference in velocity increased with decreasing contact angles of the glass and SiO(2) surfaces in the range of 20-67 degrees (advancing contact angles for water droplets). The corresponding contact angle of CVD-TMCS was 81 degrees. In the absence of methylcellulose, there was high-quality motility on TMCS but no motility on glass/SiO(2). This observation was independent of the contact angle of the glass/SiO(2) surfaces and of HMM incubation concentrations (30-150 microg mL(-)(1)) and ionic strengths of the assay solution (20-50 mM). Complete motility selectivity between TMCS and SiO(2) was observed for both nonpatterned and for micro- and nanopatterned surfaces. Spectrophotometric analysis of HMM depletion during incubation, K/EDTA ATPase measurements, and total internal reflection fluorescence spectroscopy of HMM binding showed only minor differences in HMM surface densities between TMCS and SiO(2)/glass. Thus, the motility contrast between the two surface chemistries seems to be attributable to different modes of HMM binding with the hindrance of actin binding on SiO(2)/glass.
The in vitro motility assay is valuable for fundamental studies of actomyosin function and has recently been combined with nanostructuring techniques for the development of nanotechnological applications. However, the limited understanding of the interaction mechanisms between myosin motor fragments (heavy meromyosin, HMM) and artificial surfaces hampers the development as well as the interpretation of fundamental studies. Here we elucidate the HMM−surface interaction mechanisms for a range of negatively charged surfaces (silanized glass and SiO2), which is relevant both to nanotechnology and fundamental studies. The results show that the HMM-propelled actin filament sliding speed (after a single injection of HMM, 120 μg/mL) increased with the contact angle of the surfaces (in the range of 20−80°). However, quartz crystal microbalance (QCM) studies suggested a reduction in the adsorption of HMM (with coupled water) under these conditions. This result and actin filament binding data, together with previous measurements of the HMM density (Sundberg, M.; Balaz, M.; Bunk, R.; Rosengren-Holmberg, J. P.; Montelius, L.; Nicholls, I. A.; Omling, P.; Tågerud, S.; Månsson, A. Langmuir 2006, 22, 7302−7312. Balaz, M.; Sundberg, M.; Persson, M.; Kvassman, J.; Månsson, A. Biochemistry 2007, 46, 7233−7251), are consistent with (1) an HMM monolayer and (2) different HMM configurations at different contact angles of the surface. More specifically, the QCM and in vitro motility assay data are consistent with a model where the molecules are adsorbed either via their flexible C-terminal tail part (HMMC) or via their positively charged N-terminal motor domain (HMMN) without other surface contact points. Measurements of ζ potentials suggest that an increased contact angle is correlated with a reduced negative charge of the surfaces. As a consequence, the HMMC configuration would be the dominant configuration at high contact angles but would be supplemented with electrostatically adsorbed HMM molecules (HMMN configuration) at low contact angles. This would explain the higher initial HMM adsorption (from probability arguments) under the latter conditions. Furthermore, because the HMMN mode would have no actin binding it would also account for the lower sliding velocity at low contact angles. The results are compared to previous studies of the microtubule−kinesin system and are also discussed in relation to fundamental studies of actomyosin and nanotechnological developments and applications.
In the in vitro motility assay, actin filaments are propelled by surface-adsorbed myosin motors, or rather, myosin motor fragments such as heavy meromyosin (HMM). Recently, efforts have been made to develop actomyosin powered nanodevices on the basis of this assay but such developments are hampered by limited understanding of the HMM adsorption geometry. Therefore, we here investigate the HMM adsorption geometries on trimethylchlorosilane- [TMCS-] derivatized hydrophobic surfaces and on hydrophilic negatively charged surfaces (SiO(2)). The TMCS surface is of great relevance in fundamental studies of actomyosin and both surface substrates are important for the development of motor powered nanodevices. Whereas both the TMCS and SiO(2) surfaces were nearly saturated with HMM (incubation at 120 microg mL(-1)) there was little actin binding on SiO(2) in the absence of ATP and no filament sliding in the presence of ATP. This contrasts with excellent actin-binding and motility on TMCS. Quartz crystal microbalance with dissipation (QCM-D) studies demonstrate a HMM layer with substantial protein mass up to 40 nm above the TMCS surface, considerably more than observed for myosin subfragment 1 (S1; 6 nm). Together with the excellent actin transportation on TMCS, this strongly suggests that HMM adsorbs to TMCS mainly via its most C-terminal tail part. Consistent with this idea, fluorescence interference contrast (FLIC) microscopy showed that actin filaments are held by HMM 38 +/- 2 nm above the TMCS-surface with the catalytic site, on average, 20-30 nm above the surface. Viewed in a context with FLIC, QCM-D and TIRF results, the lack of actin motility and the limited actin binding on SiO(2) shows that HMM adsorbs largely via the actin-binding region on this surface with the C-terminal coiled-coil tails extending >50 nm into solution. The results and new insights from this study are of value, not only for the development of motor powered nanodevices but also for the interpretation of fundamental biophysical studies of actomyosin function and for the understanding of surface-protein interactions in general.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.