The dystonias are a common clinically and genetically heterogeneous group of movement disorders. More than ten loci for inherited forms of dystonia have been mapped, but only three mutated genes have been identified so far. These are DYT1, encoding torsin A and mutant in the early-onset generalized form, GCH1 (formerly known as DYT5), encoding GTP-cyclohydrolase I and mutant in dominant dopa-responsive dystonia, and TH, encoding tyrosine hydroxylase and mutant in the recessive form of the disease. Myoclonus-dystonia syndrome (MDS; DYT11) is an autosomal dominant disorder characterized by bilateral, alcohol-sensitive myoclonic jerks involving mainly the arms and axial muscles. Dystonia, usually torticollis and/or writer's cramp, occurs in most but not all affected patients and may occasionally be the only symptom of the disease. In addition, patients often show prominent psychiatric abnormalities, including panic attacks and obsessive-compulsive behavior. In most MDS families, the disease is linked to a locus on chromosome 7q21 (refs. 11-13). Using a positional cloning approach, we have identified five different heterozygous loss-of-function mutations in the gene for epsilon-sarcoglycan (SGCE), which we mapped to a refined critical region of about 3.2 Mb. SGCE is expressed in all brain regions examined. Pedigree analysis shows a marked difference in penetrance depending on the parental origin of the disease allele. This is indicative of a maternal imprinting mechanism, which has been demonstrated in the mouse epsilon-sarcoglycan gene.
We conducted a genome-wide association study (GWAS) and a follow-up study of bipolar disorder (BD), a common neuropsychiatric disorder. In the GWAS, we investigated 499,494 autosomal and 12,484 X-chromosomal SNPs in 682 patients with BD and in 1300 controls. In the first follow-up step, we tested the most significant 48 SNPs in 1729 patients with BD and in 2313 controls. Eight SNPs showed nominally significant association with BD and were introduced to a meta-analysis of the GWAS and the first follow-up samples. Genetic variation in the neurocan gene (NCAN) showed genome-wide significant association with BD in 2411 patients and 3613 controls (rs1064395, p = 3.02 × 10(-8); odds ratio = 1.31). In a second follow-up step, we replicated this finding in independent samples of BD, totaling 6030 patients and 31,749 controls (p = 2.74 × 10(-4); odds ratio = 1.12). The combined analysis of all study samples yielded a p value of 2.14 × 10(-9) (odds ratio = 1.17). Our results provide evidence that rs1064395 is a common risk factor for BD. NCAN encodes neurocan, an extracellular matrix glycoprotein, which is thought to be involved in cell adhesion and migration. We found that expression in mice is localized within cortical and hippocampal areas. These areas are involved in cognition and emotion regulation and have previously been implicated in BD by neuropsychological, neuroimaging, and postmortem studies.
Human plasmacytoid precursor dendritic cells (ppDC) are a major source of type I IFN upon exposure to virus and bacteria, yet the stimulus causing their maturation into DCs is unknown. After PBMC activation with immunostimulatory bacterial DNA sequences (CpG-DNA) we found that ppDC are the primary source of IFN-α. In fact, either CpG-DNA or dsRNA (poly(I:C)) induced IFN-α from purified ppDC. Surprisingly, only CpG-DNA triggered purified ppDC survival, maturation, and production of TNF, GM-CSF, IL-6, and IL-8, but not IL-10 or IL-12. Known DC activators such as CD40 ligation triggered ppDC maturation, but only IL-8 production, while bacterial LPS was negative for all activation criteria. An additional finding was that only CpG-DNA could counteract IL-4-induced apoptosis in ppDC. Therefore, CpG-DNA represents a pathogen-associated molecular pattern for ppDC. In contrast to these finding, CpG-DNA, like LPS, caused TNF, IL-6, and IL-12 release from PBMC and purified monocytes; however, differentiation of monocytes into DCs with GM-CSF and IL-4 unexpectedly resulted in refractoriness to CpG-DNA, but not LPS. Taken together, these results suggest that within a DC subset a multiplicity of responses can be generated by distinct environmental stimuli and that responses to a given stimulus may be dissimilar between DC subsets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.