Many applications such as pumping of solid state lasers or ignition of explosives require high optical output powers during a short period. Pulsed operated diode lasers meet these requirements. They can be driven at elevated power levels, well above the ones specified for continuous wave (cw) operation. The optical near-field intensity of a diode laser in this operation regime is a key parameter since it determines the beam properties of the device. High power AlGaAs/GaAs quantum well broad area diode lasers are subjected to single pulse step tests carried out up to and beyond their ultimate limits of operation. Laser near-fields are monitored on a picosecond time scale using a streak-camera setup during pulse currents of up to ~50 times the threshold current. A transition from gain guiding to thermally-induced index guiding of the near-field is shown. Further power increase is prevented by catastrophic optical damage (COD). This sudden failure mechanism is studied in conjunction with filamentary properties of the near-field. The defect growth dynamics resolved on the picosecond time scale is used to gather inside into the physics behind COD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.