Molecular docking is the methodology of choice for studying in silico protein-ligand binding and for prioritizing compounds to discover new lead candidates. Traditional docking simulations suffer from major limitations, mostly related to the static or semi-flexible treatment of ligands and targets. They also neglect solvation and entropic effects, which strongly limits their predictive power. During the last decade, methods based on full atomistic molecular dynamics (MD) have emerged as a valid alternative for simulating macromolecular complexes. In principle, compared to traditional docking, MD allows the full exploration of drug-target recognition and binding from both the mechanistic and energetic points of view (dynamic docking). Binding and unbinding kinetic constants can also be determined. While dynamic docking is still too computationally expensive to be routinely used in fast-paced drug discovery programs, the advent of faster computing architectures and advanced simulation methodologies are changing this scenario. It is feasible that dynamic docking will replace static docking approaches in the near future, leading to a major paradigm shift in in silico drug discovery. Against this background, we review the key achievements that have paved the way for this progress.
Computational approaches currently assist medicinal chemistry through the entire drug discovery pipeline. However, while several computational tools and strategies are available to predict binding affinity, predicting the drug–target binding kinetics is still a matter of ongoing research. Here, we challenge scaled molecular dynamics simulations to assess the off-rates for a series of structurally diverse inhibitors of the heat shock protein 90 (Hsp90) covering 3 orders of magnitude in their experimental residence times. The derived computational predictions are in overall good agreement with experimental data. Aside from the estimation of exit times, unbinding pathways were assessed through dimensionality reduction techniques. The data analysis framework proposed in this work could lead to better understanding of the mechanistic aspects related to the observed kinetic behavior.
The big data concept is currently revolutionizing several fields of science including drug discovery and development. While opening up new perspectives for better drug design and related strategies, big data analysis strongly challenges our current ability to manage and exploit an extraordinarily large and possibly diverse amount of information. The recent renewal of machine learning (ML)-based algorithms is key in providing the proper framework for addressing this issue. In this respect, the impact on the exploitation of molecular dynamics (MD) simulations, which have recently reached mainstream status in computational drug discovery, can be remarkable. Here, we review the recent progress in the use of ML methods coupled to biomolecular simulations with potentially relevant implications for drug design. Specifically, we show how different ML-based strategies can be applied to the outcome of MD simulations for gaining knowledge and enhancing sampling. Finally, we discuss how intrinsic limitations of MD in accurately modeling biomolecular systems can be alleviated by including information coming from experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.