Bisphenol A (BPA), an organic synthetic compound found in some plastics and epoxy resins, is classified as an endocrine disrupting chemical. Exposure to BPA is especially dangerous if it occurs during specific “critical periods” of life, when organisms are more sensitive to hormonal changes (i.e., intrauterine, perinatal, juvenile or puberty periods). In this study, we focused on the effects of chronic exposure to BPA in adult female mice starting during pregnancy. Three months old C57BL/6J females were orally exposed to BPA or to vehicle (corn oil). The treatment (4 µg/kg body weight/day) started the day 0 of pregnancy and continued throughout pregnancy, lactation, and lasted for a total of 20 weeks. BPA-treated dams did not show differences in body weight or food intake, but they showed an altered estrous cycle compared to the controls. In order to evidence alterations in social and sociosexual behaviors, we performed the Three-Chamber test for sociability, and analyzed two hypothalamic circuits (well-known targets of endocrine disruption) particularly involved in the control of social behavior: the vasopressin and the oxytocin systems. The test revealed some alterations in the displaying of social behavior: BPA-treated dams have higher locomotor activity compared to the control dams, probably a signal of high level of anxiety. In addition, BPA-treated dams spent more time interacting with no-tester females than with no-tester males. In brain sections, we observed a decrease of vasopressin immunoreactivity (only in the paraventricular and suprachiasmatic nuclei) of BPA-treated females, while we did not find any alteration of the oxytocin system. In parallel, we have also observed, in the same hypothalamic nuclei, a significant reduction of the membrane estrogen receptor GPER1 expression.
Epidemiological studies support the idea that multiple sclerosis (MS) is a multifactorial disease, overlapping genetic, epigenetic, and environmental factors. A better definition of environmental risks is critical to understand both etiology and the sex-related differences of MS. Exposure to endocrine-disrupting compounds (EDCs) fully represents one of these risks. EDCs are natural or synthetic exogenous substances (or mixtures) that alter the functions of the endocrine system. Among synthetic EDCs, exposure to bisphenol A (BPA) has been implicated in the etiology of MS, but to date, controversial data has emerged. Furthermore, nothing is known about bisphenol S (BPS), one of the most widely used substitutes for BPA. As exposure to bisphenols will not disappear soon, it is necessary to clarify their role also in this pathological condition defining their role in disease onset and course in both sexes. In this study, we examined, in both sexes, the effects of perinatal exposure to BPA and BPS in one of the most widely used mouse models of MS, experimental autoimmune encephalomyelitis (EAE). Exposure to bisphenols seemed to be particularly deleterious in males. In fact, both BPA- and BPS-treated males showed anticipation of the disease onset and an increased motoneuron loss in the spinal cord. Overall, BPA-treated males also displayed an exacerbation of EAE course and an increase in inflammation markers in the spinal cord. Analyzing the consequences of bisphenol exposure on EAE will help to better understand the role of both xenoestrogens and endogenous estrogens on the sexually dimorphic characteristics of MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.