No abstract
The growing number of patients affected by neurodegenerative disorders represents a huge problem for healthcare systems, human society, and economics. In this context, omics strategies are crucial for the identification of molecular factors involved in disease pathobiology, and for the discovery of biomarkers that allow early diagnosis, patients’ stratification, and treatment response prediction. The integration of different omics data is a required step towards the goal of personalized medicine. The Italian proteomics community is actively developing and applying proteomics approaches to the study of neurodegenerative disorders; moreover, it is leading the mitochondria-focused initiative of the Human Proteome Project, which is particularly important given the central role of mitochondrial impairment in neurodegeneration. Here, we describe how Italian research groups in proteomics have contributed to the knowledge of many neurodegenerative diseases, through the elucidation of the pathobiology of these disorders, and through the discovery of disease biomarkers. In particular, we focus on the central role of post-translational modifications analysis, the implementation of network-based approaches in functional proteomics, the integration of different omics in a systems biology view, and the development of novel platforms for biomarker discovery for the high-throughput quantification of thousands of proteins at a time.
Mitochondrial dysfunction and vesicular trafficking alterations have been implicated in the pathogenesis of several neurodegenerative diseases. It has become clear that pathogenetic pathways leading to neurodegeneration are often interconnected. Indeed, growing evidence suggests a concerted contribution of impaired mitophagy and vesicles formation in the dysregulation of neuronal homeostasis, contributing to neuronal cell death. Among the molecular factors involved in the trafficking of vesicles, Ras analog in brain (Rab) proteins seem to play a central role in mitochondrial quality checking and disposal through both canonical PINK1/Parkin-mediated mitophagy and novel alternative pathways. In turn, the lack of proper elimination of dysfunctional mitochondria has emerged as a possible causative/early event in some neurodegenerative diseases. Here, we provide an overview of major findings in recent years highlighting the role of Rab proteins in dysfunctional mitochondrial dynamics and mitophagy, which are characteristic of neurodegenerative diseases. A further effort should be made in the coming years to clarify the sequential order of events and the molecular factors involved in the different processes. A clear cause–effect view of the pathogenetic pathways may help in understanding the molecular basis of neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.