The absorption coefficient mu(a), scattering coefficient mu(s), and anisotropy factor g of diluted and undiluted human blood (hematocrit 0.84 and 42.1%) are determined under flow conditions in the wavelength range 250 to 1100 nm, covering the absorption bands of hemoglobin. These values are obtained by high precision integrating sphere measurements in combination with an optimized inverse Monte Carlo simulation (IMCS). With a new algorithm, appropriate effective phase functions could be evaluated for both blood concentrations using the IMCS. The best results are obtained using the Reynolds-McCormick phase function with the variation factor alpha = 1.2 for hematocrit 0.84%, and alpha = 1.7 for hematocrit 42.1%. The obtained data are compared with the parameters given by the Mie theory. The use of IMCS in combination with selected appropriate effective phase functions make it possible to take into account the nonspherical shape of erythrocytes, the phenomenon of coupled absorption and scattering, and multiple scattering and interference phenomena. It is therefore possible for the first time to obtain reasonable results for the optical behavior of human blood, even at high hematocrit and in high hemoglobin absorption areas. Moreover, the limitations of the Mie theory describing the optical properties of blood can be shown.
The real part of the complex refractive index of oxygenated native hemoglobin solutions dependent on concentration was determined in the wavelength range 250 to 1100 nm by Fresnel reflectance measurements. The hemoglobin solution was produced by physical hemolysis of human erythrocytes followed by ultracentrifugation and filtration. A model function is presented for calculating the refractive index of hemoglobin solutions depending on concentration in the wavelength range 250 to 1100 nm.
Reactive oxygen and nitrogen species (ROS/RNS) which may exist as radicals or nonradicals, as well as reactive sulfur species and reactive carbon species, play a major role in aging processes and in carcinogenesis. These reactive molecule species (RMS), often referred to as ‘free radicals' or oxidants, are partly by-products of the physiological metabolism. When RMS concentrations exceed a certain threshold, cell compartments and cells are injured and destroyed. Endogenous physiological mechanisms are able to neutralize RMS to some extent, thereby limiting damage. In the skin, however, pollutants and particularly UV irradiation are able to produce additional oxidants which overload the endogenous protection system and cause early aging, debilitation of immune functions, and skin cancer. The application of antioxidants from various sources in skin care products and food supplements is therefore widespread, with increasingly effective formulations being introduced. The harmful effects of RMS (aside from impaired structure and function of DNA, proteins, and lipids) are: interference with specific regulatory mechanisms and signaling pathways in cell metabolism, resulting in chronic inflammation, weakening of immune functions, and degradation of tissue. Important control mechanisms are: MAP-kinases, the aryl-hydrocarbon receptor (AhR), the antagonistic transcription factors nuclear factor-κB and Nrf2 (nuclear factor erythroid 2-related factor 2), and, especially important, the induction of matrix metalloproteinases which degrade dermal connective tissue. Recent research, however, has revealed that RMS and in particular ROS/RNS are apparently also produced by specific enzyme reactions in an evolutionarily adapted manner. They may fulfill important physiologic functions such as the activation of specific signaling chains in the cell metabolism, defense against infectious pathogens, and regulation of the immune system. Normal physiological conditions are characterized by equilibrium of oxidative and antioxidative mechanisms. The application of antioxidants in the form of 'cosmeceuticals' or systemic 'nutraceuticals' should aim to support a physiologically balanced oxidation status in the skin.
Resonance Raman spectroscopy was used as a fast and non-invasive optical method of measuring the absolute concentrations of beta-carotene and lycopene in living human skin.Beta-carotene and lycopene have different absorption values at 488 and 514.5 nm and, consequently, the Raman lines for beta-carotene and lycopene have different scattering efficiencies at 488 and 514.5 nm excitations. These differences were used for the determination of the concentrations of beta-carotene and lycopene. Using multiline Ar+ laser excitation, clearly distinguishable carotenoid Raman spectra can be obtained which are superimposed on a large fluorescence background. The Raman signals are characterized by two prominent Stokes lines at 1160 and 1525 cm−1, which have nearly identical relative intensities. Both substances were detected simultaneously.The Raman spectra are obtained rapidly, i.e. within about 10 s, and the required laser light exposure level is well within safety standards. The disturbance of the measurements by non-homogeneous skin pigmentation was avoided by using a relatively large measuring area of 35 mm2.It was shown that beta-carotene and lycopene distribution in human skin strongly depends upon the skin region studied and drastically changed inter-individually. Skin beta-carotene and lycopene concentrations are lower in smokers than in non-smokers and higher in the vegetarian group.
The intrinsic optical parameters absorption coefficient mu(a), scattering coefficient micros, anisotropy factor g, and effective scattering coefficient micros were determined for human red blood cell (RBC) suspensions of hematocrit 33.2% dependent on the oxygen saturation (SAT O(2)) in the wavelength range 250 to 2,000 nm, including the range above 1,100 nm, about which there are no data available in the literature. Integrating sphere measurements of light transmittance and reflectance in combination with inverse Monte Carlo simulation were carried out for SAT O(2) levels of 100 and 0%. In the wavelength range up to 1,200 nm, the absorption behavior is determined by the hemoglobin absorption. The spectral range above the cells' absorption shows no dependence on SAT O(2) and approximates the absorption of water with values 20 to 30% below the respective values for water. Parameters micros and g are significantly influenced by the SAT O(2)-induced absorption changes. Above 600 nm, micros decreases continuously from values of 85 mm(-1) to values of 30 mm(-1) at 2,000 nm. The anisotropy factor shows a slight decrease with wavelengths above 600 nm. In the spectral regions of 1,450 and 1,900 nm where water has local absorption maxima, g shows a significant decrease down to 0.85, whereas micros increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.