P-glycoprotein (PGP), the product of the MDR1 gene, is a transmembrane active efflux pump for a variety of carcinogens and cytostatics. It has been suggested that MDR1 polymorphisms contribute to the variability in cancer risk and therapeutic outcome. We examined the relevance of C3435T polymorphism in relation to breast cancer susceptibility, clinical and pathological characteristics of breast carcinoma, the therapeutic response and hematologic toxicities after anthracycline-based chemotherapy. A significant association between allele frequencies and histological type, stage and histological grade was observed (P ¼ 0.024, 0.014, 0.006, respectively, w 2 -test or Fisher's exact test). We also found significantly higher (P ¼ 0.019, w 2 -test) T allele frequency in breast cancer patients (n ¼ 221) than in controls (n ¼ 113). A significantly enhanced therapeutic outcome after neoadjuvant therapy (n ¼ 38; P ¼ 0.021, Fisher's exact test) and longer time to progression after anthracycline-based chemotherapy (n ¼ 102; P ¼ 0.049, log-rank test) were observed in CC homozygotes. However, no significant association between hematologic toxicities and C3435T polymorphism was detectable.
Cancer is a fatal disease with a complex pathophysiology. Lack of specificity and cytotoxicity, as well as the multidrug resistance of traditional cancer chemotherapy, are the most common limitations that often cause treatment failure. Thus, in recent years, significant efforts have concentrated on the development of a modernistic field called nano-oncology, which provides the possibility of using nanoparticles (NPs) with the aim to detect, target, and treat cancer diseases. In comparison with conventional anticancer strategies, NPs provide a targeted approach, preventing undesirable side effects. What is more, nanoparticle-based drug delivery systems have shown good pharmacokinetics and precise targeting, as well as reduced multidrug resistance. It has been documented that, in cancer cells, NPs promote reactive oxygen species (ROS) production, induce cell cycle arrest and apoptosis, activate ER (endoplasmic reticulum) stress, modulate various signaling pathways, etc. Furthermore, their ability to inhibit tumor growth in vivo has also been documented. In this paper, we have reviewed the role of silver NPs (AgNPs) in cancer nanomedicine, discussing numerous mechanisms by which they render anticancer properties under both in vitro and in vivo conditions, as well as their potential in the diagnosis of cancer.
SummaryBackgroundThis study aimed to examine the relationship between XRCC1, p53 and MDR1 protein, along with polymorphisms of their genes and their prognostic values in breast cancer. The following clinical and pathological parameters were evaluated: histopathological type of tumor, grade, stage, Her2/neu expression, ER, PR positivity and involvement of regional lymph nodes.Material/MethodsExpression of proteins was determined in 39 samples of breast cancer by immunohistochemistry. Nucleotide polymorphisms were analyzed by PCR-RFLP. For statistical analysis, chi-square test (Yates), Fisher’s exact test, and correlation test were used to analyze the data.ResultsThe highest protein expression was immunohistochemically found in MDR1 protein, with 54% of samples testing positive. In addition, the evaluation of MDR1 expression revealed higher positive immunoreactivity in lobular (LIC) and other types of tumor in comparison to ductal (DIC) type. The expression of p53 and XRCC1 protein was equal, but lower compared to MDR1, both testing positive in 36% of all tissue samples. Comparison of XRCC1 protein and histopathological type of tumor revealed that DIC and LIC types were mostly XRCC1-negative, while other types, papillary and mucinous were more likely to be XRCC1-positive. Interestingly, when evaluating LIC samples separately, a negative correlation between the Her2/neu and expression of XRCC1 was detected. Apparently, all Her2/neu-positive samples were XRCC1-negative (6/86%). The correlation test indicated a negative correlation between Her2/neu-positive samples and XRCC1-negative specimens (r=1, p<0.05). Statistical analysis did not reveal a correlation of p53 expression with clinical and pathological parameters. Similarly, no statistically significant difference was found between the tested polymorphisms and protein expression.ConclusionsWe did not find statistically significant correlation between tested polymorphisms and their protein expression.
Around the world, cancer patients often combine conventional anticancer treatment with complementary alternative medicines derived from natural sources such as fungi and mushrooms, including the popular lingzhi or reishi medicinal mushroom Ganoderma lucidum. Many studies to date have described the anticancer properties of G. lucidum, which are attributed to its major pharmacologically bioactive compounds, such as terpenoids and polysaccharides. Moreover, several scientific observations have suggested a potential beneficial therapeutic strategy using G. lucidum in combination with chemotherapeutic agents to improve therapeutic outcome. However, to my knowledge, no systematic review has been conducted in this area. Therefore, this review summarizes the current knowledge on G. lucidum or its individual components in relation to chemotherapeutic efficacy, ability to reverse multidrug resistance, and chemotherapeutic toxicity.
Colorectal (CRC) and gastric cancers (GC) are the most common digestive tract cancers with a high incidence rate worldwide. The current treatment including surgery, chemotherapy or radiotherapy has several limitations such as drug toxicity, cancer recurrence or drug resistance and thus it is a great challenge to discover an effective and safe therapy for CRC and GC. In the last decade, numerous phytochemicals and their synthetic analogs have attracted attention due to their anticancer effect and low organ toxicity. Chalcones, plant-derived polyphenols, received marked attention due to their biological activities as well as for relatively easy structural manipulation and synthesis of new chalcone derivatives. In this study, we discuss the mechanisms by which chalcones in both in vitro and in vivo conditions suppress cancer cell proliferation or cancer formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.