The approximation operators provided by classical approximation theory use exclusively as underlying algebraic structure the linear structure of the reals. Also they are all linear operators. We address in the present paper the following problems: Need all the approximation operators be linear? Is the linear structure the only one which allows us to construct particular approximation operators? As an answer to this problem we propose new, particular, pseudo-linear approximation operators, which are defined in some ordered semirings. We study these approximations from a theoretical point of view and we obtain that these operators have very similar properties to those provided by classical approximation theory. In this sense we obtain uniform approximation theorems of Weierstrass type, and Jackson-type error estimates in approximation by these operators
http://irafm.osu.cz We show that on the basis of fuzzy transform, the problem of reconstruction of corrupted images can be solved. The proposed technique is called image fusion. An algorithm of image fusion, based on fuzzy transform, is proposed and justified. A measure of fuzziness of an image is proposed as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.