In this work, we propose a unified description of the softening behavior of a β metastable alloy and Ti6Al4V alloy. In the first part we provide sound evidence that the hot deformation of Ti6Al4V of the beta phase above and below the beta transus temperature takes place solely by dynamic recovery at moderate strains, similarly to the behavior of the Ti5Al5Mo5V3Cr1Zr near-beta alloy. This study was possible due to the combination of the fast cooling rates achieved after controlled hot deformation and the reconstruction of the parent beta phase from electron backscattered diffraction measurements of the frozen alpha phase by using an innovative developed algorithm. The dynamic recovery as a common dynamic restoration behavior for Ti6Al4V and Ti5Al5Mo5V3Cr1Zr is described mathematically with a Derby type relationship of the subgrain size and the stress of the beta phase. A rule of mixture allows the determination of the load partition between the two allotropic phases.
Medium-Mn steels are one of the promising candidates to achieve the desired mechanical properties in the 3rd generation of cold rolled advanced high strength steels (AHSS) for automotive applications. Their duplex microstructure consists of a ferritic matrix with a substantial amount of metastable retained austenite, which transforms to strain-induced martensite upon forming. This strengthening mechanism, well known as the TRansformation Induced Plasticity (TRIP) effect, provides the steel an excellent combination of high strength and elongation with a product of RmxA80 up to 30.000 MPa%. As hot rolling is one of the crucial steps during their production, the hot deformation behavior of Medium-Mn steels has to be thoroughly evaluated during their development stage.Therefore, the present contribution studied the hot deformation response of a 0.1 %C 5.5 %Mn steel by means of hot compression tests using a Gleeble® 3800 device. The influence of different deformation temperatures (900-1100 °C) and strain rates (0.1-10 s-1) on the stress-strain behavior was investigated. The flow curves were analyzed and corrected by the effects of adiabatic heating.Furthermore, the strain rate sensitivity m of the material was determined by evaluating stress values at different strain rates for given temperatures and strains. The m-values can be used to predict the deformation behavior of the material within the investigated range of parameters.Lastly, the hot working behavior of an alternative steel concept for a 3rd Generation AHSS with significantly lower Mn-content was comparatively investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.