Aims Inflammation is a key driver of atherosclerosis and myocardial infarction (MI), and beyond proteins and microRNAs (miRs), long noncoding RNAs (lncRNAs) have been implicated in inflammation control. To obtain further information on the possible role of lncRNAs in the context of atherosclerosis, we obtained comprehensive transcriptome maps of circulating immune cells (peripheral blood mononuclear cells, PBMCs) of early onset MI patients. One lncRNA significantly suppressed in post-MI patients was further investigated in a murine knockout model. Methods and results Individual RNA-sequencing (RNA-seq) was conducted on PBMCs from 28 post-MI patients with a history of MI at age ≤50 years and stable disease ≥3 months before study participation, and from 31 healthy individuals without manifest cardiovascular disease or family history of MI as controls. RNA-seq revealed deregulated protein-coding transcripts and lncRNAs in post-MI PBMCs, among which nuclear enriched abundant transcript (NEAT1) was the most highly expressed lncRNA, and the only one significantly suppressed in patients. Multivariate statistical analysis of validation cohorts of 106 post-MI patients and 85 controls indicated that the PBMC NEAT1 levels were influenced (P = 0.001) by post-MI status independent of statin intake, left ventricular ejection fraction, low-density lipoprotein or high-density lipoprotein cholesterol, or age. We investigated NEAT1−/− mice as a model of NEAT1 deficiency to evaluate if NEAT1 depletion may directly and causally alter immune regulation. RNA-seq of NEAT1−/− splenocytes identified disturbed expression and regulation of chemokines/receptors, innate immunity genes, tumour necrosis factor (TNF) and caspases, and increased production of reactive oxygen species (ROS) under baseline conditions. NEAT1−/− spleen displayed anomalous Treg and TH cell differentiation. NEAT1−/− bone marrow-derived macrophages (BMDMs) displayed altered transcriptomes with disturbed chemokine/chemokine receptor expression, increased baseline phagocytosis (P < 0.0001), and attenuated proliferation (P = 0.0013). NEAT1−/− BMDMs responded to LPS with increased (P < 0.0001) ROS production and disturbed phagocytic activity (P = 0.0318). Monocyte-macrophage differentiation was deregulated in NEAT1−/− bone marrow and blood. NEAT1−/− mice displayed aortic wall CD68+ cell infiltration, and there was evidence of myocardial inflammation which could lead to severe and potentially life-threatening structural damage in some of these animals. Conclusion The study indicates distinctive alterations of lncRNA expression in post-MI patient PBMCs. Regarding the monocyte-enriched NEAT1 suppressed in post-MI patients, the data from NEAT1−/− mice identify NEAT1 as a novel lncRNA-type immunoregulator affecting monocyte-macrophage functions and T cell differentiation. NEAT1 is part of a molecular circuit also involving several chemokines and interleukins persistently deregulated post-MI. Individual profiling of this circuit may contribute to identify high-risk patients likely to benefit from immunomodulatory therapies. It also appears reasonable to look for new therapeutic targets within this circuit.
The data suggest a molecular circuit involving the MALAT1-mascRNA system, interactions between MALAT1 and NEAT1, and key immune effector molecules, cumulatively impacting upon the development of atherosclerosis. It appears reasonable to look for therapeutic targets in this circuit and to screen for anomalies in the NEAT1-MALAT1 region in humans, too, as possible novel disease risk factors.
Background Variants of the desmosomal protein desmoplakin are associated with arrhythmogenic cardiomyopathy, an important cause of ventricular arrhythmias in children and young adults. Disease penetrance of desmoplakin variants is incomplete and variant carriers may display noncardiac, dermatologic phenotypes. We describe a novel cardiac phenotype associated with a truncating desmoplakin variant, likely causing mechanical instability of myocardial desmosomes. Methods and Results In 2 young brothers with recurrent myocarditis triggered by physical exercise, screening of 218 cardiomyopathy‐related genes identified the heterozygous truncating variant p.Arg1458Ter in desmoplakin. Screening for infections yielded no evidence of viral or nonviral infections. Myosin and troponin I autoantibodies were detected at high titers. Immunohistology failed to detect any residual DSP protein in endomyocardial biopsies, and none of the histologic criteria of arrhythmogenic cardiomyopathy were fulfilled. Cardiac magnetic resonance imaging revealed no features associated with right ventricular arrhythmogenic cardiomyopathy, but multifocal subepicardial late gadolinium enhancement was present in the left ventricles of both brothers. Screening of adult cardiomyopathy cohorts for truncating variants identified the rare genetic variants p.Gln307Ter, p.Tyr1391Ter, and p.Tyr1512Ter, suggesting that over subsequent decades critical genetic/exogenous modifiers drive pathogenesis from desmoplakin truncations toward different end points. Conclusions The described novel phenotype of familial recurrent myocarditis associated with a desmoplakin truncation in adolescents likely represents a serendipitously revealed subtype of arrhythmogenic cardiomyopathy. It may be caused by a distinctive adverse effect of the variant desmoplakin upon the mechanical stability of myocardial desmosomes. Variant screening is advisable to allow early detection of patients with similar phenotypes.
Long noncoding RNA MALAT1-derived mascRNA is involved in cardiovascular innate immunity Dear Editor, Next-generation sequencing revealed that the majority of the human genome is transcribed but has no coding function. It is estimated that .30000 long noncoding RNAs (lncRNAs) are expressed in humans, but their functions are largely unknown (Suckau et al., 2009; Rinn and Chang, 2012; Poller et al., 2013). Consideration of noncoding genomic elements in pathogenetic studies is warranted and enabled by technological advances allowing comprehensive transcriptome mapping of protein-coding genes as well as small and long ncRNAs. We searched for lncRNAs influencing antiviral capacity in patients with Coxsackievirus B3 (CVB3) cardiomyopathy (Kuhl et al., 2012) and assign here immunoregulatory functions to the lncRNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and its enzymatic processing product MALAT1associated small cytoplasmic RNA (mascRNA). Some lncRNAs undergo complex posttranscriptional processing (Wilusz et al., 2008; Kuhn et al., 2015). The MALAT1-mascRNA system is particularly interesting in this regard, since the 7-kb primary transcript localizes to the nucleus (Tripathi et al., 2010), whereas the small MALAT1-derived mascRNA is found exclusively in the cytoplasm. MALAT1 has not previously been studied in the context of infectious or immunological diseases, but it is highly expressed in tumors and associated with metastasis (Nakagawa et al., 2012). Recent studies additionally report that MALAT1 regulates endothelial cell functions and angiogenesis in vitro and in vivo (Michalik et al., 2014). For the first time, our new data now indicate that the MALAT1-mascRNA system has important immunoregulatory functions as well. Moreover, we document regulatory and functional dichotomy in the MALAT1
Background— Investigation of disease pathogenesis confined to protein-coding regions of the genome may be incomplete because many noncoding variants are associated with disease. We aimed to identify novel predictive markers for the course of enterovirus (CVB3) cardiomyopathy by screening for noncoding elements influencing the grossly different antiviral capacity of individual patients. Methods and Results— Transcriptome mapping of CVB3 cardiomyopathy patients revealed distinctive cardiac microRNA (miR) patterns associated with spontaneous virus clearance and recovery (CVB3-ELIM) versus virus persistence and progressive clinical deterioration (CVB3-PERS). Profiling of protein-coding genes and 754 miRs in endomyocardial biopsies of test cohorts was performed at their initial presentation, and those spontaneously eliminating the virus were compared with those with virus persistence on follow-up. miR profiling revealed highly significant differences in cardiac levels of 16 miRs, but not of protein-coding genes. Evaluation of this primary distinctive miR pattern in validation cohorts, and multivariate receiver operating characteristic curve analysis, confirmed this pattern as highly predictive for disease course (area under the curve, 0.897±0.071; 95% confidence interval, 0.758–1.000). Eight miRs were strongly induced in CVB3-PERS (miRs 135b, 155, 190, 422a, 489, 590, 601, 1290), but undetectable in CVB3-ELIM or controls. They are predicted to target multiple immune response genes, and 2 of these were confirmed by antisense-mediated ablation of miRs 135b, 190, and 422a in the monocytic THP-1 cell line. Conclusions— An immediate clinical application of the data is cardiac miR profiling to assess the risk of virus persistence and progressive clinical deterioration in CVB3 cardiomyopathy. Patients at risk are eligible for immediate antiviral therapy to minimize irreversible cardiac damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.