Moths and butterflies (Lepidoptera) are the largest group with heterogametic females. Although the ancestral sex chromosome system is probably Z0/ZZ, most lepidopteran species have the W chromosome. When and how the W chromosome arose remains elusive. Existing hypotheses place the W origin either at the common ancestor of Ditrysia and Tischeriidae, or prefer independent origins of W chromosomes in these two groups. Due to their phylogenetic position at the base of Ditrysia, bagworms (Psychidae) play an important role in investigating the W chromosome origin. Therefore, we examined the W chromosome status in three Psychidae species, namely Proutia betulina, Taleporia tubulosa, and Diplodoma laichartingella, using both classical and molecular cytogenetic methods such as sex chromatin assay, comparative genomic hybridization (CGH), and male vs. female genome size comparison by flow cytometry. In females of all three species, no sex chromatin was found, no female-specific chromosome regions were revealed by CGH, and a Z-chromosome univalent was observed in pachytene oocytes. In addition, the genome size of females was significantly smaller than males. Overall, our study provides strong evidence for the absence of the W chromosome in Psychidae, thus supporting the hypothesis of two independent W chromosome origins in Tischeriidae and in advanced Ditrysia.
Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.