Tbox18 (Tbx18) and Tbox15 (Tbx15) encode a closely related pair of vertebrate-specific T-box (Tbx) transcription factors. Functional analyses in the mouse have proven the requirement of Tbx15 in skin and skeletal development and of Tbx18 in the formation of the vertebral column, the ureter, and the posterior pole of the heart. Despite the accumulation of genetic data concerning the embryological roles of these genes, it is currently unclear how Tbx18 and Tbx15 exert their function on the molecular level. Here, we have initiated a molecular analysis of Tbx18 and Tbx15 proteins and have characterized functional domains for nuclear localization, DNA binding, and transcriptional modulation. We show that both proteins homo-and heterodimerize, bind to various combinations of T half-sites, and repress transcription in a Groucho-dependent manner. Competition with activating T-box proteins may constitute one mode of action as we show that Tbx18 interacts with Gata4 and Nkx2-5 and competes Tbx5-mediated activation of the cardiac Natriuretic peptide precursor type a-promoter and that ectopic expression of Tbx18 down-regulates Tbx6-activated Delta-like 1 expression in the somitic mesoderm in vivo.
Vertebrate limb outgrowth is driven by a positive feedback loop that involves Sonic hedgehog (Shh) and Gremlin1 (Grem1) in the posterior limb bud mesenchyme and Fibroblast growth factors (Fgfs) in the overlying epithelium. Proper spatio-temporal control of these signaling activities is required to avoid limb malformations such as polydactyly. Here we show that, in Tbx2-deficient hindlimbs, Shh/Fgf4 signaling is prolonged, resulting in increased limb bud size and duplication of digit 4. In turn, limb-specific Tbx2 overexpression leads to premature termination of this signaling loop with smaller limbs and reduced digit number as phenotypic manifestation. We show that Tbx2 directly represses Grem1 in distal regions of the posterior limb mesenchyme allowing Bone morphogenetic protein (Bmp) signaling to abrogate Fgf4/9/17 expression in the overlying epithelium. Since Tbx2 itself is a target of Bmp signaling, our data identify a growth-inhibiting positive feedback loop (Bmp/Tbx2/Grem1). We propose that proliferative expansion of Tbx2-expressing cells mediates self-termination of limb bud outgrowth due to their refractoriness to Grem1 induction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.