Crohn’s disease is a consequence of dysregulated inflammatory response to the host’s microbiota. Although anti-TNF treatment improves the quality of the patient’s life, a large proportion of patients lose response to the treatment. The past decade of research has led to a continuum of studies showcasing the heterogeneity of anti-TNF response; thus, the aim of the present study was to dissect transcriptome-wide findings to transcript isoform specific levels and combine the analyses with refined information of immune cell landscapes in colon tissue, and subsequently select promising candidates using gene ontology and genomic integration. We enrolled Slovenian Crohn’s disease patients who were naïve with respect to adalimumab treatment. We performed colon tissue RNA sequencing and peripheral blood mononuclear cell DNA genotyping with a subsequent contemporary integrative approach to combine immune cell deconvoluted isoform transcript specific transcriptome analysis, gene ontology layering and genomic data. We identified nine genes (MACF1, CTSE, HDLBP, HSPA9, HLA-DMB, TAP2, LGMN, ANAPC11, ACP5) with 15 transcripts and 16 variants involved in the adalimumab response. Our study identified loci, some of which were previously shown to contribute to inflammatory bowel disease susceptibility, as novel loci involved in adalimumab response in Crohn’s disease patients.
Psoriasis is a chronic, immune-mediated and inflammatory skin disease. Although various biological drugs are available for psoriasis treatment, some patients have poor responses or do not respond to treatment. The aim of the present study was to highlight the molecular mechanism of responsiveness to current biological drugs for psoriasis treatment. To this end, we reviewed previously published articles that reported genes associated with treatment response to biological drugs in psoriasis, and gene ontology analysis was subsequently performed using the Cytoscape platform. Herein, we revealed a statistically significant association between NF-kappaB signaling (p value = 3.37 × 10−9), regulation of granulocyte macrophage colony-stimulating factor production (p value = 6.20 × 10−6), glial cell proliferation (p value = 2.41 × 10−5) and treatment response in psoriatic patients. To the best of our knowledge, we are the first to directly associate glial cells with treatment response. Taken together, our study revealed gene ontology (GO) terms, some of which were previously shown to be implicated in the molecular pathway of psoriasis, as novel GO terms involved in responsiveness in psoriatic disease patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.